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Energy provisioning plays a key role in the sustainable operations ofWireless Sensor Networks (WSNs). Recent

efforts deploy multi-source energy harvesting sensors to utilize ambient energy. Meanwhile, wireless charging

is a reliable energy source not affected by spatial-temporal ambient dynamics. This paper integrates multiple

energy provisioning strategies and adaptive adjustment to accomplish self-sustainability under complex

weather conditions. We design and optimize a three-tier framework with the first two tiers focusing on the

planning problems of sensors with various types and distributed energy storage powered by environmental

energy. Then we schedule the MC between different charging activities and propose an efficient, 4-factor

approximation algorithm. Finally, we adaptively adjust the algorithms to capture real-time energy profiles and

jointly optimize those correlated modules. Our extensive simulations demonstrate significant improvement of

network lifetime (3×), increase of harvested energy (15%), reduction of network cost (30%) and the charging

capability of MC by 100%.
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1 INTRODUCTION
Energy provisioning is critical in wireless sensor networks (WSNs) since common approaches

of energy conservation [1–3] do not address the problem at the source. As battery gets depleted

ultimately, network service is disrupted. This creates new challenges in many applications, e.g.,

sensors scattered in large mountainous areas for wildfire monitoring in California [4]; sensors

deployed in Fukushima nuclear reactors to monitor radiation levels after earthquake [5]; sensors

surrounding volcanos to detect early signs of eruption in Indonesia. All these applications are

mission-critical and require continuous, uninterrupted services. Replacing sensor battery becomes
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infeasible in these hazardous environments. To this end, a key step is to make sensor networks

self-sustainable on energy.

There exists two main strategies to power sensors: either through energy harvesting or wireless
charging 1

. Ambient energy sources such as solar/wind typically enjoy higher power density and

multiple sources can be combined for higher energy generation [6–8]. Yet, they are subject to

the micro-climate variation that fluctuates rapidly due to spatial-temporal factors. For instance,

cloud movements, sunlight angle, foliage shades, building obstructions, temperature and humidity

all have impacts on the harvested energy. During rainy days, solar irradiance is limited; in hot

and humid season, wind could completely stop for days. Thus, it is critical for the system to

be cognizant of the spatial and temporal characteristics of the weather, and plan sensing, data

processing, and communication accordingly. Under extreme circumstances, environmental energy

is still not enough to guarantee robustness, even multiple sources are combined.

Wireless charging provides a more reliable energy source, as evidenced in [9] that energy can be

delivered via Mobile Chargers (MCs). Since the MC typically serves one or a few sensors in the

vicinity, scalability becomes an issue for large-scale networks. If a fraction of the sensors can become

self-sufficient on energy (such as harvesting energy from the environment), it is possible to cover

the rest of the network by wireless-rechargeable sensors, thereby only one MC needed. From the

perspective of operational cost, the MC should also replenish its own energy. Most of the previous

works redirect the MC back to the base station with connection to the power grid [10]. However,

such infrastructure is unavailable in ad-hoc applications such as environmental and natural disaster

monitoring. To address this challenge, energy harvesting stations (HS) can be deployed in the field

to store enough energy with large harvesting equipment. When the MC depletes its energy, it

recharges its own battery at the HS so the network no longer relies on electricity from the power

grid. This way, we form a closed loop by employing the MC to deliver energy harvested from the

stations to wireless-rechargeable sensors, and make the network self-sustained on energy.

This new framework integrates components from a variety of sensors and equipment, thus

entailing a holistic approach to tackle a series of design and optimization challenges. In particular,

we explore solutions to the following questions. First, how to determine the optimal combination

of sensors harvesting different types of energy, regarding their energy profiles? Second, where to

deploy HS to maximize energy output while minimizing moving cost of the MC? Third, how to

schedule activities of the MC to respond to charging requests and replenish its own battery at HS?

Finally, how to dynamically adjust the operations based on the real-time energy profile, and jointly

optimize different modules in the framework?

We propose a suite of algorithms to address these issues in a systematic manner. First, we

determine the percentages of different types of sensors by formulating a sensor composition problem
and solve it optimally in polynomial time [11]. Second, we propose an algorithm that can partition

sensing fields into equal-size regions, and deploy HS by jointly considering potential moving cost

of the MC and spatial-temporal energy distributions. Third, we formulate the charging schedules of

the MC into a variant of the Interval Scheduling Problem [12], and propose a 3-factor approximation

algorithm. To enhance the results from static optimization based on historical data, we further

combine offline prediction with stochastic online algorithms to update the HS locations, sensor

composition, and field division dynamically. Finally, we jointly optimize the composition of sensors

with HS deployment as a multi-objective optimization problem. The contributions of this paper are

summarized below.

1
Energy harvesting mainly harvests ambient energy while wireless charging is a special kind of energy harvesting via

controlled inductance/RF radiation.
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• We find the optimal combination of sensors given the ambient energy profiles, with the

minimum deploying cost.

• We study the optimal placement of HS to achieve the maximal energy output and optimal

sensor coverage.

• We propose a 4-approximation algorithm to plan MC’s activity by jointly considering sensor

charging and its own energy replenishment

• We design a stochastic online algorithm to jointly optimize and facilitate the interactions

between different modules.

• Our evaluation indicates tremendous extensions of network lifetime (3×) and charging

capability (2×), as well as additional cost savings (30%) and energy storage (15%). To the

best of our knowledge, this is the first work that aims at the design and optimization of a

self-sustainableWSN, powered by both multiple ambient energy source and wireless charging.

The rest of the paper is organized as follows. Sec. 2 presents the network model, assumptions

and motivations. Sec. 3 solves the optimal sensor composition problem. Sec. 4 investigates the

optimal deployment of HS. Sec. 5 schedules activities of the MC. Sec. 6 dynamically adjusts network

operations and performs joint optimization. Sec. 7 evaluates the performance. Sec. 8 studies literature

and Sec. 9 concludes the paper.

2 PRELIMINARY
This section presents an overview of the architecture, network components, assumptions and the

preliminary analysis that motivates this work.

2.1 Network Model and Assumptions

Energy Harvesting Station

Mobile Charger

Wireless Rechargeable 

Sensor

Solar-powered  Sensor 

Wind-powered Sensor 

Solar Energy Rich Place

Wind Energy Rich Place

Energy Depleted Sensor

Region Boundary

Charging Path

Grids

E

Fig. 1. An overview of network components.

The network consists of a combination of sensors that can harvest energy from different sources.

The ideal setting is to equip each sensor with all kinds of harvesting devices, at a high cost as well

as increased system complexity. To remain under a reasonable budget, we assume each sensor is

equipped with one energy harvesting device. Although it may not fully utilize the environmental

energy, the proposed solution is more cost-effective for large networks and different types of sensors

can be deployed interchangeably to adapt to the local energy distribution. The main components

in the network are defined in the following.
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Fig. 2. System architecture of WSN with multi-source energy harvesting and wireless charging.

Energy Harvesting Sensors. We mainly consider three types of harvesting devices: solar, wind,
wireless-rechargeable sensors. Specifically, to ensure efficiency, we adopt inductive-based wireless

charging. We quote prices of sensors on the marketplace of Amazon and find their average prices

of $50, $35 and $30 for solar, wind and wireless-rechargeable sensors, respectively. The cost savings

of forming different sensor composition can be used to establish energy harvesting stations, which

provide energy for the MC.

Mobile Charger. The MC serves as a carrier to deliver energy from the HS to wireless-rechargeable

sensors. It roams around the sensing field to receive energy requests, schedule and deliver energy

to fulfill those requests. Once its own energy is about to deplete, it returns to one of the HS to

recharge its own battery.

Energy Harvesting Stations. The HS is a simple device with two major components: a large

capacity battery and solar-wind harvesting device. They can harvest different kinds of energy at

the same time and store enough energy for the MC. Previous research assumes such facility is in

the vicinity of the power grid. Unfortunately, it is not only sub-optimal for the MC (higher moving

cost), but also limited in ad-hoc environment with no access to the power infrastructure.

Fig. 1 gives an example of a field divided into three regions with one HS in each. We first

assume the micro-climate data is available since it is not difficult to obtain in practice through some

preliminary surveys. Then we account for the cases when such historical data is not available. We

assume the HS have limited mobility that can change their locations infrequently.

2.2 Overview of Framework
Fig. 2 describes the operations in the proposed system. Our strategy is to first come up with a

solution for each module and then jointly optimize some of them together. The solution begins

with an optimal planning problem: ❶ that finds the appropriate proportions of sensors to satisfy

the task and energy demands, by solving a sensor composition problem. ❷ The sensing field is

divided into regions of similar size, and ❸ HS are deployed to balance ambient energy and distance

to wireless-rechargeable sensors. ❹ With the locations of HS, the MC schedules its activity of

charging sensors and returns to HS for battery refill. After the optimization is done for each step, ❺
the prediction engine forecasts the energy profiles, and dynamically adjusts the modules between

❶ to ❸, based on the energy data collected. ❻ Tier 1 and tier 2 are jointly optimized using the

number of wireless-rechargeable sensors that are active.
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2.3 Preliminary Analysis
Although ambient energy such as wind and solar might provide spatial-temporal compensation to

each other, in this subsection, we demonstrate that wireless-rechargeable sensors are still necessary

to make the network self-sustained on energy. The preliminary results are derived based on the

public dataset collected from NREL National Wind Technology Center (M2 Tower) [40] (from both

solar irradiance and wind speed) located in Coal Creek Canyon, Colorado, USA.

We calculate wind energy based on the speed from the dataset using[41],

𝑃
wind

=
1

2

𝜌𝐴𝑣3𝐶𝑝 , (1)

where 𝑃wind is the output power of wind, 𝜌 is the air density,𝐴 is the swept area of the wind turbine

blades, 𝑣 is the wind speed, and 𝐶𝑝 is the power efficiency of converting wind energy to electricity.

The 𝐶𝑝 value is bounded by the Betz Limit of 0.59, and for the practical wind turbine, the 𝐶𝑝 value

usually lies in the range of 0.1 ∼ 0.3, and 𝐶𝑝 = 0.3 is adopted here [42]. 𝐴 is 150 cm
2
. For solar

irradiance, the size of solar panel is set to 12 cm
2
(identical size of a sensor). The raw data of M2

Tower of the year 2017 is used, where solar radiance and the wind speed data is acquired at the

height of 2 meters (treated as the ground level).

We plot the energy evolution through a year. Fig. 3(a) shows that the wind power lasts from

winter to early spring, as well as autumn, but stops in summer. Interestingly, solar irradiance is

able to fill the energy gap during the summer, and the expected weakness in winter is compensated

by wind power. The black line computes their sum. To benchmark power consumption of sensors,

we leverage the datasheet of Raspberry Pi 3 [43] and deduct this energy consumption from the

sum of energy harvested. We can see that ambient energy does not always satisfy the energy

demand as the deficit shown in shaded area. To guarantee network operations, the energy storage

should remain positive; hence, depending on the ambient energy alone is not enough. If ambient

energy is captured, stored by HS (with higher harvesting capabilities) and delivered to the wireless-

rechargeable sensors via the MC, the residual energy can be elevated to positive as shown in Fig.

3(b). This would possibly allow the network to retain its functionality.

HS also has its own capacity. The HS adopted in the preliminary analysis is equipped with larger

solar panel and wind turbine, with size of 600 cm
2
and swept area of 7500 cm

2
respectively. Such

HS can generate an average of 442 W·h electricity per day in the area based on the weather data

collected. Fig. 3(c) shows the match/mismatch of energy demands from different number of sensors

to the energy harvested by one HS across the entire year. We can see that an HS can handle up

to 200 sensors, and barely satisfy the overwhelming energy demands from 300 sensors. Thus, the

deployments of HS should also grow regarding the scale of the network.

3 SENSOR COMPOSITION PROBLEM
In this section, we first study the planning problem defined as the Sensor Composition Problem
(SCP). Before going into the technical details, we summarize those commonly used notations used

in the following sections by Table 1. Different types of sensors usually have diverse manufacturing

costs from our preliminary studies. Hence, we need to determine the ratio of different types of

sensors to be deployed at various locations depending on the energy income (e.g., solar, wind, and

wireless charging) and their cost. The objective of SCP is to minimize the total cost of sensors while

making sure network energy is sufficient to support sensor activity. The inputs are the historical

energy distributions (from surveyed data). Sensors work together to conduct different tasks such as

sensing, computing and communication. E.g. the task of monitoring a target can be simultaneously

performed by multiple sensors, whose sensing range covers the target. In [44], the authors build a

new prototype based on RFID tags to monitor the gesture of human body with great accuracy.
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Fig. 3. Energy status in the network.
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Table 1. List of Important Notations

Notation Definition

𝑦𝑢𝑣 Grid in the 𝑢-th row and 𝑣-th column

𝑛𝑢𝑣 Number of sensors in 𝑦𝑢𝑣
𝜂𝑢𝑣𝑧 Percentage of 𝑧-th type sensors in 𝑦𝑢𝑣
𝑐𝑧 Manufacturing cost of one 𝑧-th type

sensor

𝑡𝑘 𝑘-th time slot

𝜏 Flow link in SCP

𝑞 Number of HS

G𝑙 𝑙-th region

𝜆 Locations of HS

𝑎 Region-size precision index

𝜉 Size deviation ratio

𝑥𝑖 𝑖-th charging request

To facilitate analysis, the sensing field is divided into grids
2
. 𝑦𝑢𝑣 represents the coordinate of the

𝑢-th row and 𝑣-th column. 𝑛𝑢𝑣 is the number of sensors to be deployed in the grid 𝑦𝑢𝑣 . There are 𝑙

types of sensors (𝑙 = 3), where the percentages of each type of sensors are, 𝜂𝑢𝑣
1

for solar, 𝜂𝑢𝑣
2

for

wind and 𝜂𝑢𝑣
3

for wireless-rechargeable sensors. Without loss of generality, the formulation here

considers any 𝑙 , which can be more than 3 depending on the number of available energy sources.

𝑝𝑧 (𝑦𝑢𝑣, 𝑡𝑘 ) is the power income from the 𝑧-th energy source at location 𝑦𝑢𝑣 and time 𝑡𝑘 . The grid

partitions the field with the minimum granularity, e.g., 100m × 100m, so energy distribution is

approximately uniform in each grid. Let 𝐶 (𝑦𝑢𝑣, 𝑡𝑘 ) denote the required energy at location 𝑦𝑢𝑣 at

time 𝑡𝑘 , composed of sensing, computing, communication and data transmission. The condition to

ensure the sum of energy income is greater than or equal to the energy consumed at any arbitrary

time is given below, which is not optimal in terms of manufacturing cost since the batteries of

sensors can restore the extra energy and utilize it in face of insufficient ambient energy.

𝑙∑
𝑧=1

𝑛𝑢𝑣𝜂
𝑢𝑣
𝑧 𝑝𝑧 (𝑦𝑢𝑣, 𝑡𝑘 ) ≥ 𝐶 (𝑦𝑢𝑣, 𝑡𝑘 ),∀𝑢, 𝑣, 𝑘 . (2)

To find the optimal composition of sensors while maintaining energy balance, we formulate

SCP into the network flow problem, which finds the feasible flows meeting the demands of the

sink, and involves the least cost from the sensor nodes. Shown in Fig. 4, the Source represents all
kinds of energy income, and the Sink represents all energy consumption tasks. There are 𝑛 sensors

and𝑚 tasks, where the index of sensors and tasks are denoted by 𝑖 and 𝑗 separately. The sensors

are represented by the nodes directly connected with the source and the tasks are represented

by the nodes directly connected with the sink in Fig. 4. The𝑚 tasks include sensing, computing

and data transmission in different grids 𝑦𝑢𝑣 . In the formulated network flow problem, there exists

a link between sensor 𝑖 and task 𝑗 only if the task can be conducted by the sensor. For instance,

for the task of monitoring a target, only the sensors within the sensing range from the target can

establish links with the monitoring task. The differences of sensors are only the energy sources in

the considered scenario, which can be treated functionally equivalent if only they can complete the

task. In the grid 𝑦𝑢𝑣 , the flow of the link is denoted as 𝜏𝑢𝑣𝑖 𝑗𝑧 (𝑧 denotes the sensor type). 𝜏
𝑢𝑣
𝑖 𝑗𝑧 (𝑡𝑘 ) is

the energy consumption of type-𝑧 sensor 𝑖 used for the purpose of completing task 𝑗 at location

𝑦𝑢𝑣 and time slot 𝑡𝑘 . The energy consumption of task 𝑗 is 𝐸𝑢𝑣𝑗 . The optimization problem can be

2
Henceforth, the term grid refers to the square representing a specific position.
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Fig. 4. Formulation of SCP into a network flow problem.

formulated as,

P1 : min

𝑙∑
𝑧=1

𝑛𝑢𝑣𝜂
𝑢𝑣
𝑧 𝑐𝑧 (3)

Subject to ∑
𝑗

𝜏𝑢𝑣𝑖 𝑗𝑧 (𝑡𝑘 ) ≤ 𝑝𝑧 (𝑦𝑢𝑣, 𝑡𝑘 ),∀ 𝑖, 𝑘, 𝑧, (4)

𝜏𝑢𝑣𝑖 𝑗𝑧 (𝑡𝑘 ) ≥ 0,∀ 𝑖, 𝑗, 𝑘, 𝑧, (5)∑
𝑖

𝑙∑
𝑧=1

𝜏𝑢𝑣𝑖 𝑗𝑧 (𝑡𝑘 ) ≥ 𝐸𝑢𝑣𝑗 (𝑡𝑘 ),∀ 𝑗, 𝑘 . (6)

Eq. (3) minimizes the total manufacturing costs composed of 𝑙 = 3 types of sensors, where 𝜂𝑢𝑣𝑧
is the optimization variable, 𝑛𝑢𝑣 is a fixed number satisfying Eq. (2) and 𝑐𝑧 is the given cost of

deploying a sensor of the 𝑧-th type. Eq. (4) ensures all the tasks conducted on sensor 𝑖 of type 𝑧 do

not consume more energy than the harvested energy 𝑝𝑧 (𝑦𝑢𝑣, 𝑡𝑘 ) at any time 𝑡𝑘 . Eq. (5) ensures that

the energy consumed in each link must be positive. Eq. (6) ensures that the energy being assigned

to complete task 𝑗 is more than its energy requirement 𝐸𝑢𝑣𝑗 (𝑡𝑘 ). 𝑝𝑧 (𝑦𝑢𝑣, 𝑡𝑘 ) can be derived from the

historical data or offline survey conducted by the MC. The constant 𝑛𝑢𝑣 is derived by solving Eq.

(2) with all combinations of 𝜂𝑢𝑣𝑧 . The granularity of any 𝜂𝑢𝑣𝑧 is 1%, inferring that total combinations

of 𝜂𝑢𝑣𝑧 is

(
𝑙+99
𝑙−1

)
(e.g.

(
102

2

)
when 𝑙=3). The smallest 𝑛𝑢𝑣 is found among all the results and used as the

input of P1. A day is slotted into equal intervals 𝑡𝑘 . The problem solves for each grid 𝑦𝑢𝑣 in the

field. For given 𝑛𝑢𝑣 and 𝜂
𝑢𝑣
𝑧 , P1 is a maximum flow problem, which can be optimally solved by MPM

algorithm [11]. By plugging different values of 𝑛𝑢𝑣 and 𝜂
𝑢𝑣
𝑧 , we can find the values with minimum

cost according to Eq. (3), which has a feasible solution for the problem. For each computation,

MPM algorithm takes O((𝑛 +𝑚)3) time. For given number of 𝑛 sensors, they can be divided into 3

different categories, where

(
𝑛+2
2

)
number of combinations exist and each of which is plugged into

Eq. (3) and tested. Since

(
𝑛+2
2

)
is in the order of O(𝑛2), the total time complexity is O((𝑛 +𝑚)3𝑛2).

Discussion.While the proposed mechanism can derive the optimal sensor composition for each

grid, it also has some drawback. Since this is an offline approachwhich depends on the historical data

of energy profiles, it may not adapt to the online scenario, where unexpected weather conditions

appear. To address this, the dynamic sensor composition is introduced in Section 7.1.
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4 DEPLOYMENT OF ENERGY HARVESTING STATION
The energy harvested by HS is essential to support the wireless-rechargeable sensors. Similar to

energy-harvesting sensors, their locations also determine the amount of energy they can harvest

as well as the moving cost of the MC to reach them. Therefore, the goal is to find locations that

are energy-rich and easily accessible by the MC. The energy-rich locations can be found from

historical data. In addition to energy income, HS should be deployed close to places with more

energy demands, so as to reduce moving cost of the MC. Therefore, both energy distribution and

charging demands from MC should be jointly considered.

4.1 Division of Sensing Field
Given 𝑞 HS satisfying the energy demands, the field of any arbitrary shape is divided into 𝑞 similar-

size regions represented by {G𝑙 }. The equivalent size would minimize the energy variance between

different regions. This way, the network can avoid coverage holes due to energy depletion.

There are some trivial ways to divide the field. Take a square area for instance, it can be conve-

niently split into 𝑞 equivalent rectangles. However, this method has some drawbacks: 1) nonuniform

traveling distance in each rectangle. The distance from the center of the rectangle to the edge varies

according to the directions emitted from the center. Traveling distance of the MC from sensors to

the HS is unbalanced, which causes charging delay to those sensors far from the HS; 2) Uneven

locations of HS (centroid of the rectangles). Their locations tend to concentrate near the center

of the square, which leads to extended traveling time to service some nodes near the boundaries.

Of course, an ideal case is a circular field, whereas for rectangular ones, the distances from the

centroid are even larger than the maximum distance (i.e. the radius) in the circular field. Yet, circular

division would leave some inevitable gaps if the overlapping of regions are not allowed. The sensors

in the overlapping areas may increase the workload of multiple mobile chargers simultaneously,

which reduces the charging capability of one MC. Based on these observations, the strategy should

generate regions as isotropic as possible (i.e. split a field of arbitrary shape into identical sizes,

which are also uniform in all orientations).

We propose a mechanism as described below. For better illustration, we take a square field as an

example, whereas the general procedure can be applied to any arbitrary shape. The objective is to

divide it into 𝑘2 equal-size square grids, 𝑘 = ⌈𝑎√𝑞⌉, where 𝑎 is an input integer called precision

index. Larger 𝑎 results finer granularity. Then the side length for most of the smaller square region

is derived as ⌊𝑘/√𝑞⌋ = ⌊⌈𝑎 · √𝑞⌉/√𝑞⌋. This means that for most of the small square regions, the

side length is ⌊𝑘/√𝑞⌋ times the grid length, and each square region contains ⌊𝑘/√𝑞⌋2 grids. Thus,
we have ⌊ 𝑘√

𝑞
⌋ = 𝑎.

Next, the square field is divided into 𝑞 regions. Starting from the grid on the top left corner of the

field, the algorithm goes to the right by 𝑎 grids, goes downward by 𝑎 grids, and generates the first

square region (contains 𝑎2 grids). Then the next one is derived by going to the right. The process

repeats until no more complete square region found on the right direction. The process continues

downward until there is no more complete square region. For the remaining grids, starting from

the grid on the bottom left corner of the field, the first 𝑎2 adjacent grids form another region. The

same process also starts from the top right corner. This process continues until the number of the

remaining unassigned grids falls within the interval between [𝑎2, 2𝑎2 − 1]. Finally, the remaining

grids form the last region. The mechanism is summarized in Algorithm 1. The proposed algorithm

tends to derive more square fields, which balances the traveling distance of MC within the region

and the distribution of the region centroid.

The algorithm produces most regions in square shape, some rectangles, and at most one with

irregular shape. For quantitative evaluation, we further define an index 𝜉 called Size Deviation Ratio
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Algorithm 1: Field division algorithm

1 Input: Number of regions 𝑞, precision index 𝑎, the field.

2 Output: 𝑞 regions {G𝑙 } dividing the field.
3 𝑘 ← ⌈𝑎√𝑞⌉; divide field into 𝑘2 grids {𝑦𝑢𝑣 }, Y ← {𝑦𝑢𝑣 }.𝑇 ← {𝑦𝑢𝑣 : argmin

𝑦𝑢𝑣∈Y,∀𝑢
{𝑣 }}, 𝐿 ← {𝑦𝑢𝑣 : argmin

𝑦𝑢𝑣∈Y,∀𝑣
{𝑢 }},

𝑙 ← 1.

4 𝑦𝑖 𝑗 = argmin

𝑦𝑢𝑣∈𝑇
{𝑢 }.

5 if 𝑦𝑖 ( 𝑗+𝑎−1) ∈ Y then
6 G𝑙 ← {𝑦𝑢𝑣 : 𝑖 ≤ 𝑢 ≤ 𝑖 + 𝑎 − 1, 𝑗 ≤ 𝑣 ≤ 𝑗 + 𝑎 − 1}, Y ← Y \ G𝑙 , 𝑙 ← 𝑙 + 1,𝑇 ← {𝑦𝑢𝑣 : argmin

𝑦𝑢𝑣∈Y,∀𝑢
{𝑣 }},

7 jump to line 4

8 𝑦𝑖 𝑗 = argmin

𝑦𝑢𝑣∈𝐿
{𝑣 }.

9 if 𝑦𝑖 ( 𝑗+𝑎−1) ∈ Y And 𝑦 (𝑖+𝑎−1) 𝑗 ∈ Y then
10 jump to line 4

11 while |Y | > 𝑘2 − (𝑎 − 1)𝑞 do
12 while |G𝑙 | < 𝑎2 do
13 G𝑙 ← G𝑙

⋃{𝑦𝑖 𝑗 }, Y ← Y \ {G𝑙 },𝑇 ← {𝑦𝑢𝑣 : argmin

𝑦𝑢𝑣∈Y,∀𝑢
{𝑣 }}, 𝑦𝑖 𝑗 = argmin

𝑦𝑢𝑣∈𝑇
{𝑢 }.

14 𝑙 ← 𝑙 + 1.
15 while |G𝑙 | < 𝑎2 do
16 G𝑙 ← G𝑙

⋃{𝑦𝑖 𝑗 }, Y ← Y \ {G𝑙 }, 𝐿 ← {𝑦𝑢𝑣 : argmin

𝑦𝑢𝑣∈Y,∀𝑣
{𝑢 }}, 𝑦𝑖 𝑗 = argmin

𝑦𝑢𝑣∈𝐿
{𝑣 }.

17 𝑙 ← 𝑙 + 1, G𝑙 ← Y.

3 4

5

6 7

Grids

Regions

Square Shape

Irregular Shape

1 2

Fig. 5. Division of 8 × 8 square field into 7 regions.

as the ratio between the difference of largest and smallest region size and the mean,

𝜉 =
Max −Min

Mean

. (7)

For the example of square field (grid area has unit 1), Min = 𝑎2, and Max = ⌈𝑎√𝑞⌉2 − (𝑞 − 1)𝑎2, and
Average = ⌈𝑎√𝑞⌉2/𝑞. Hence, 𝜉 is,

𝜉 = 𝑞 − 𝑎2𝑞2

⌈𝑎√𝑞⌉2
. (8)

ACM Trans. Sensor Netw., Vol. 1, No. 1, Article . Publication date: April 2021.



Design of Self-sustainable Wireless Sensor Networks with Energy Harvesting and Wireless Charging 11

1
2 3 4

5 67 8

9
Grids

Regions

Square Shape

Irregular Shape

Fig. 6. Division of irregular field into 9 regions.

4.2 Examples of Regular and Irregular Fields
Fig. 5 gives an example of the mechanism for a regular field. The field is divided into 7 regions.

𝑎 = 3, so the field contains 8 × 8 grids. The digits in the figure represent the order of the region

being generated. The first 4 regions are squares. The next 3 regions of irregular shape contain the

remaining unassigned grids. Note that the regions derived by the algorithm have comparable sizes.

The size deviation ratio is 11% for this example.

The method is also applicable to irregular shapes. The precision index 𝑎 can be adjusted larger

to mitigate boundary effects. Fig. 6 shows another example of applying the algorithm for irregular

field. 𝑎 = 7, and regions 1 to 6 are derived based on square regions, and regions 7 to 9 are derived

based on irregular regions. The square shape region for irregular field is defined as the region

which contains at least one square of side length equal to ⌊𝑘/√𝑞⌋ times grid lengths. If some grids

are unable to be included in the first pass, they are assigned to adjacent regions. Similarly, those

irregular areas not included in any grid are also merged into adjacent regions. Using this method, 9

regions are derived with similar size, and the size deviation ratio is 16%.

Note that, due to the uncertainty of the irregular shapes of the field, starting from the top-left

corner may not always derive the best partition. Therefore, all grids on the left edge of the field

are applied as the starting points and their results are compared to derive the optimal. Among all

the partitions, the ones with the largest number of square shapes are chosen and the deviation

parameter 𝜉 is used to break the tie (the lowest 𝜉 is preferred). Algorithm 1 traverses all the grids and

has the time complexity is O(𝑘2). For irregular field, as much as O(𝑘2) times of algorithm 1 need

to be conducted in order to find the best starting point, thus resulting in O(𝑘4) time complexity.

For the regular field, Fig. 7 demonstrates the evolution of 𝜉 with two variables 𝑞 and 𝑎. For

different number of regions 𝑞, as 𝑎 increases, the deviation ratio is trending down (with some

fluctuations). It is not monotonically decreasing because the ceiling function introduces some

rounding jitters. Having a finer granularity (larger 𝑎) is more likely to generate similar-size regions.

When 𝑞 = 9, the ratio 𝜉 = 0. Since ⌊𝑎
√
9⌋ = 3𝑎, the region can be exactly divided into 9𝑎2 equal-size

square regions. Other than 𝑞 = 9, larger 𝑞 values also results larger ratios, since the difficulty of

dividing the field increases with larger 𝑞. For 5 ≤ 𝑞 ≤ 15, 𝑎 ≥ 35 can ensure the ratio is always

smaller than 20%.

4.3 Deployment of HS
After the division, HS are ready to be deployed into the 𝑞 regions. Described in Sec. 3, the total

amount and percentages of different sensors are determined independently for each grid 𝑦𝑢𝑣 , thus
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Fig. 7. Relations between size deviation ratio (𝜉) with precision index (a) and number of regions (q).

the density 𝜌𝑢𝑣 of wireless-rechargeable sensors in grid 𝑦𝑢𝑣 is not homogeneous for each grid.

Using the centroid can achieve the largest coverage of the sensor groups in each grid [48] as well

as balance the charging latency to reach those nodes from the centroid. For region G𝑙 , the centroid
𝐶𝑙 of G𝑙 is 𝐶𝑙 =

∑
(𝑢,𝑣) ∈G𝑙 𝑦𝑢𝑣𝜌𝑢𝑣/

∑
(𝑢,𝑣) ∈G𝑙 𝜌𝑢𝑣 . The location of HS should be close to the centroid

𝐶𝑙 and the energy-rich places,

argmax

𝜆

(
𝛼 (𝑒1 (𝜆) + 𝑒2 (𝜆)) − ||𝜆 −𝐶𝑙 | |2

)
,∀𝜆 ∈ G𝑙 , (9)

where the optimization variable is the deployment location, and the optimization objective is to

maximize the summation of the harvested energy and the traveling convenience. 𝑒𝑖 (𝜆) denotes the
expectation of the 𝑖-th type energy at location 𝑥 (from historical energy profiles). | |𝜆 −𝐶𝑙 | |2 is the
deviation between 𝜆 and 𝐶𝑙 (in proportion to the Euclidean distance). 𝛼 is a scaling parameter with

the unit of𝑚/𝐽 to balance the two. The optimal location 𝜆∗ in region G𝑙 that maximizes the sum of

Eq. (9) is selected as the location of the HS. It jointly considers the potential moving cost and energy

distribution to maximize energy efficiency. The parameter 𝛼 is a user-input of the network, which

reflects the importance of these two components. 𝛼 can be raised if the power of the harvested

energy is more important for the user; otherwise, 𝛼 can be reduced if the saving of the traveling

cost is more crucial. Due to the spatial energy distributions being highly nonlinear, it is difficult to

represent the harvestable energy in a function format and derive an iterative optimization method.

Fortunately, the grid divisions are finite and the neighboring regions might have identical energy

income. To solve Eq. (9), we can perform an efficient grid search by enumerating these locations,

and pick the one with the largest output 𝜆∗. Since the candidate locations are limited, the complexity

is in the order of O(𝑆), where 𝑆 is the area of the field.

Discussion. The proposed field division algorithm is heuristic, which does not have a performance

bound on the number of derived square shapes and the size deviation ratio 𝜉 . Meanwhile, the

number 𝑞 of regions is a given input for the algorithm, which has a significant influence on the

divisions. 𝑞 may be adjusted as a parameter to derive the optimal division.
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5 SCHEDULING SENSOR CHARGING AND BATTERY REPLENISHMENT FOR
MOBILE CHARGER

The MC charges sensors to satisfy their energy demands as well as replenishes its own energy at

the HS once the energy is depleted. This section studies scheduling of such activities.

5.1 Group Interval Scheduling Maximization
Charging requests from sensors are from various locations in the field due to dynamic spatial-

temporal energy distribution. Wireless-rechargeable sensors play a key role in this situation to

maintain network operation. The objective of the MC is to satisfy the charging requests from as

many grids as possible instead of fulfill all the charging requests in one grid at once. Due to the

introduction of multi-source energy harvesting, the charging requests of all MCs need not to be

fulfilled immediately in order to maintain the network performance. By completing partial charging

requests, the covering area of one MC can be significantly extended which has been validated

in the previous work [9]. Meanwhile, the size of each grid can be adjusted. If the percentage of

serviced wireless rechargeable sensors in each grid is low, this percentage can always be increased

by decreasing the grid size in the trade-off of the area covered by MC. Compared with previous

charging mechanism [47] which tends to fulfill all the charging requests, the MC in our scenario

could dispatch the energy to a wider range, saving deploying cost of more MCs.

In the meanwhile, the MC should determine an appropriate time to replenish its own battery at

HS. The MC is not bundled with any specific HS, which can serve any MC if it is requested and has

enough energy storage. Note that, the sensors report the time when they need to start charging

based on the expected lifetime calculated via their current energy status and energy consumption

rate. The MC refills its own energy at HS beforehand considering the number of charging requests

to be fulfilled in the next time period.

All the energy requests contained during a time interval 𝑇 are the input for the scheduling of

the activities of MC in an offline manner. Once the energy of a sensor drops below the threshold,

the MC does not immediately charge the sensor, but includes the sensor into those to be scheduled

in the next round. A charging task 𝑥𝑖 starts at time 𝑠𝑖 and ends at 𝑡𝑖 . Meanwhile, the MC needs to

spend 𝑇0 time to refill its own battery in 𝑇 . The traveling distance of MC is important, however
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since it takes much less compared to the charging time, it is neglected in the formulation of P2

to improve the tractability of the problem. For example, moving on a 100𝑚 × 100𝑚 region with a

speed of 100 m/min results 1.5 min on the longest diagonal movement. Compared to that battery

charging usually takes 30-90 mins, such minimum time expense is ignored to simplify the problem.

As shown in Fig. 8, schedule of charging tasks may have temporal conflict with each other. Due to

limited wireless charging range, the MC can only respond to one request at a time. To charge as

many groups as possible, during 𝑇 time, the MC finds the maximum number of grids containing

non-conflicting charging tasks and leaves at least 𝑇0 time for recharge. The problem is formulated

as follows,

P2 : max

𝑥𝑖
|A| (10)

Subject to
𝑥𝑖 = 0 or 1,∀𝑖, (11)

𝑠𝑖 ≤ 𝑡𝑖 ,∀𝑖, (12)

R = {𝑖 |𝑥𝑖 = 1,∀𝑖}, (13)

𝑡𝑖 ≤ 𝑠 𝑗 , or 𝑡 𝑗 ≤ 𝑠𝑖 ,∀𝑖, 𝑗 ∈ R, (14)

A = {G𝑙 |𝑖 ∈ G𝑙 ,∀𝑖 ∈ R}, (15)

𝑇0 · 𝑃𝑟 ≥
∑
𝑖∈R
(𝑡𝑖 − 𝑠𝑖 ) · 𝑃𝑐 − 𝐸𝑚𝑐 , (16)

𝑇0 +
∑
𝑖∈R
(𝑡𝑖 − 𝑠𝑖 ) ≤ 𝑇 . (17)

The optimization variable 𝑥𝑖 is the indicator showing whether task 𝑖 is chosen or not. The objective

is to maximize the number of grids |A| being covered by theMC.R is the sequence of the recharging

tasks chosen by MC, and A is the set of grids where R originates. (14) ensures any two tasks

are non-overlapping. 𝑃𝑟 and 𝑃𝑐 are the charging rates at HS and sensors, repectively. 𝐸𝑚𝑐 is the

residual energy of the MC. P2 maximizes the number of grids to be charged in 𝑇 , while constraint

(16) ensures the energy replenished to the MC is larger than the energy demand of sensors, and

constraint (17) imposes the time spent on charging sensors and recharge time is within 𝑇 .

The optimization problem is a variation of Group Interval Scheduling Problem (GISP) [49]. It

considers groups of tasks, where each task 𝑥𝑖 is represented by an interval indicating its starting

time 𝑠𝑖 and finishing time 𝑡𝑖 . A subset of all the intervals are considered to be compatible if any

two of them do not have any overlapping with each other. If an interval is chosen, then it is the

representative of the group containing it. GISP aims to find the subset of compatible intervals with

the maximum coverage of different groups, i.e., maximize the number of groups (grids) having at

least one representative in the derived subset.

Different from GISP, P2 leaves 𝑇0 in addition to the charging tasks. The constraints (16) and (17)

give the upper and lower bound for 𝑇0. Combining them gives the following constraint,∑
𝑖∈R
(𝑡𝑖 − 𝑠𝑖 ) ≤

𝑇 + 𝐸𝑀𝐶/𝑃𝑟
1 + 𝑃𝑐/𝑃𝑟

. (18)

Therefore, if the summation of compatible intervals of different charging tasks is not larger than

the r.h.s of Eq. (18), then it is a feasible solution for P2. The new problem is an extension to GISP

and we call it Reserved Group Interval Scheduling Problem (R-GISP).

Reserved Group Interval Scheduling Problem (R-GISP). Interval 𝑖 starts at 𝑠𝑖 and ends at 𝑡𝑖 (𝑠𝑖 ≤ 𝑡𝑖 ),
which belongs to a group 𝐺 𝑗 (i.e. interval 𝑖 represents group 𝐺 𝑗 ), and |𝑡𝑖 − 𝑠𝑖 | is the length of the

interval. Two intervals are compatible if they do not overlap. For a set of intervals, R-GISP looks for

the set of compatible intervals, which can represent the maximum number of groups, and whose
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Fig. 9. The construction of GISP based on Boolean Satisfiability Problem.

length summation is less than or equal to a given constant. The R-GISP is formally defined in the

following,

R − GISP : max

𝑥𝑖
|Ψ| (19)

Subject to
𝑥𝑖 = 0 or 1,∀𝑖, (20)

𝑠𝑖 ≤ 𝑡𝑖 ,∀𝑖, (21)

R = {𝑖 |𝑥𝑖 = 1,∀𝑖}, (22)

𝑡𝑖 ≤ 𝑠 𝑗 , or 𝑡 𝑗 ≤ 𝑠𝑖 ,∀𝑖, 𝑗 ∈ R, (23)

Ψ = {𝐺𝑘 |𝑖 ∈ 𝐺𝑘 ,∀𝑖 ∈ R}, (24)∑
𝑖∈R
(𝑡𝑖 − 𝑠𝑖 ) ≤ 𝐶. (25)

𝑥𝑖 is the indicator showing whether interval 𝑖 is chosen or not. R is the set of all chosen intervals.

Eq. (14) ensures any two intervals are compatible. Ψ is the set of groups represented by all intervals

in R. Eq. (25) requires the summation of the length of all chosen intervals is no greater than a

constant 𝐶 .

P2 is closely related to the R-GISP. Each charging request (interval) belongs to one of the grids

(groups). A is the set of grids whose charging requests are covered by MC. P2 maximizes the

cardinality of the set A while satisfying the energy constraint, which is exactly the same as the

definition of R-GISP.

NP-Hardness. R-GISP is NP-hard.

Proof. In order to prove that R-GISP is NP-hard, we first prove GISP is NP-hard and GISP can

be reduced to R-GISP.

A special case of GISP is NP-hard. A special case of GISP solves the problem whether there is such

compatible set that contains at least one representative from each group, i.e., the size of the groups

being represented is equal to the number of groups. This special case is called Group Interval
Scheduling Decision Problem (GISDP). In order to understand the difficulty of R-GISP, the proof of

the NP-hardness of GISDP is briefly illustrated below.

A special version of Boolean Satisfiability Problem (BSP) contains a group of literals X =

{𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑔} and a group of clauses C = {𝑐1, 𝑐2, 𝑐3, . . . , 𝑐ℎ}. Any literal can be TRUE or FALSE.

Each clause contains 3 literals, e.g., 𝑐1 = 𝑥1 ∨ 𝑥2∨⌝𝑥5, where the symbol ∨ here means OR. 𝑥1 and

𝑥2 are represented positively in this clause, and 𝑥5 is represented negatively in this clause using

notation ⌝𝑥5. For this example, if either 𝑥1 is TRUE or 𝑥2 is TRUE or 𝑥5 is FALSE, then the clause

𝑐1 is TRUE. For each literal in X, it is only positively represented at most once and negatively

represented at most twice overall in C. BSP asks whether there exists such assignment to the TRUE
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Algorithm 2: Earliest Finishing First Algorithm
1 Input: A number of 𝑛 charging requests X = {𝑥𝑖 }, 𝑥𝑖 = [𝑠𝑖 , 𝑡𝑖 ], distributed in grids {𝑦𝑢𝑣 }, an empty set R.
2 Output: Charging and energy replenishment sequence R for MC.

3 X̂ ← X
4 while X̂ ≠ 𝜙 do
5 𝑓 = argmin

𝑥𝑖 ∈X
{𝑡𝑖 }, 𝑥𝑓 ∈ 𝑦𝑢𝑣 , R ← R

⋃{𝑥𝑓 };
X̂ ← X̂ \

{
{𝑥 𝑗 : 𝑥 𝑗 ∩ 𝑥𝑓 ≠ 𝜙, ∀𝑗 }⋃{𝑥 𝑗 : 𝑥 𝑗 ∈ 𝑦𝑢𝑣, ∀𝑗 }

}
.

6 if
∑

𝑖∈R (𝑡𝑖 − 𝑠𝑖 ) ≤ [𝑇 + 𝐸𝑀𝐶/𝑃𝑟 ]/[1 + 𝑃𝑐/𝑃] then
7 X ← X \ R; jump to line 3.

8 if
∑

𝑖∈R (𝑡𝑖 − 𝑠𝑖 ) > [𝑇 + 𝐸𝑀𝐶/𝑃𝑟 ]/[1 + 𝑃𝑐/𝑃] then
9 while

∑
𝑖∈R (𝑡𝑖 − 𝑠𝑖 ) >

𝑇+𝐸𝑀𝐶 /𝑃𝑟
1+𝑃𝑐 /𝑃𝑟 do

10 𝑒 ← argmax

𝑥𝑖 ∈R
(𝑡𝑖 − 𝑠𝑖 ) ; R ← R \ {𝑥𝑒 }

11 MC charges sensors following the charging sequence derived in R.
12 MC replenishes its energy at the closest HS with enough energy storage during spare time.

of FALSE status of literals X such that 𝑐1 ∧ 𝑐2 ∧ 𝑐3 ∧ . . . ∧ 𝑐ℎ is TRUE. The symbol ∧ here means

AND, therefore, 𝑐1 ∧ 𝑐2 ∧ 𝑐3 ∧ . . . ∧ 𝑐ℎ is TRUE if and only if every clause is TRUE.

As shown in Fig. 9, GISDP can be constructed from the BSP. For example, for a literal 𝑥𝑖 , whether

it is true or false corresponds to two intervals in group 1; for a clause 𝑐 𝑗 , depending on the positive

or negative representation and the times of the literal appearing in the clause, group 2 contains 3

intervals. It can be proved that, the feasible assignments for the BSP are one to one correspondence

with the maximum compatible set for GISDP. Since this special BSP is NP-hard [50], GISDP is also

NP-hard.

GISDP is a special case of GISP where the maximum groups being represented is equal to the

total number of groups so GISP is NP-hard. GISP removes constraint (18) from R-GISP (i.e. extends

the r.h.s of E.q. (18) to∞) so GISP is a special case to R-GISP thus R-GISP is NP-hard. □

5.2 Earliest Finishing First Algorithm
Due to the NP-hardness of R-GISP, it is not possible to find an optimal solution in polynomial time

unless P=NP. Hence, we seek solutions that can achieve an approximated ratio within the optimal

one in polynomial time.

We first propose a greedy algorithm as the baseline shown in Algorithm 2. Each time, the charging

task 𝑥𝑖 with the earliest deadline 𝑡𝑖 is chosen. All charging tasks intersecting with it are removed.

Charging tasks from the same grid are also removed. This process iterates until no task is left.

Second, Eq. (18) is the necessary condition for continuing the Algorithm 2. Therefore, for those

intervals chosen after the first step, the algorithm sums them up and compares the summation with

(𝑇 + 𝐸𝑀𝐶/𝑃𝑟 )/(1 + 𝑃𝑐/𝑃𝑟 ), which is the maximum charging time. If the summation is smaller than

the maximum charging time, indicating the intervals chosen in step one are compatible with energy

constraints, then it removes all the intervals overlapping with them to assure no conflict exists

between chosen intervals. For the remaining intervals, the algorithm performs the first step again.

If the summation is larger than the maximum charging time, it removes the longest interval from

the covering set until the summation of the remaining intervals is not larger than the maximum

charging time. In the last step, for a given period𝑇 , MC performs the charging tasks in R according

to the order of the starting time. MC replenishes its own energy at the closest HS having enough

energy when idle. When MC chooses the charging station, it requests the current status of the
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Algorithm 3: 4-Approx Shortest Interval First Algorithm
1 Input: A number of 𝑛 charging requests X = {𝑥𝑖 }, 𝑥𝑖 = [𝑠𝑖 , 𝑡𝑖 ], distributed in grids {𝑦𝑢𝑣 }, an empty set R.
2 Output: Charging and energy replenishment sequence R for MC.

3 while
∑
∀𝑥𝑖 ∈R |𝑡𝑖 − 𝑠𝑖 | ≤ [𝑇 + 𝐸𝑀𝐶/𝑃𝑟 ]/[1 + 𝑃𝑐/𝑃] and X ≠ 𝜙 do

4 𝑥𝑓 ← argmin

𝑥𝑖 ∈X
|𝑡𝑖 − 𝑠𝑖 |, 𝑥𝑓 ∈ 𝑦𝑢𝑣 , R ← R

⋃{𝑥𝑓 }
5 X ← X \

{
{𝑥 𝑗 : 𝑥 𝑗 ∩ 𝑥𝑓 ≠ 𝜙, ∀𝑗 }⋃{𝑥 𝑗 : 𝑥 𝑗 ∈ 𝑦𝑢𝑣, ∀𝑗 }

}
.

6 R ← R \ {the last interval put into R}.
7 MC charges sensors following the charging sequence derived in R.
8 MC replenishes its energy at the closest HS with enough energy storage during spare time.

energy storage of each HS, and the chosen station reserves enough energy for the MC to ensure

the availability of energy replenishment.

An example is shown in Fig. 8. 11 charging requests from 5 different regions are received. Solving

the algorithm yields that 5 requests from different regions are met so as to achieve the best region

coverage. 𝑇0 time is left for the energy replenishment of MC.

The complexity of the algorithm is analyzed below. Assume there are 𝑛 charging requests from𝑚

grids. Sorting requires O(𝑛 log𝑛) time. First, finding the intervals intersecting with the chosen one

takes O(𝑛) time with at most O(𝑚) times, and removing the intervals takes 𝑂 (𝑛) time. Therefore,

the time complexity for the first step is 𝑂 (𝑛 log𝑛) +𝑂 (𝑛𝑚). For the second part, summing up the

intervals and comparing with the maximum charging time takes 𝑂 (𝑛) time, and this process takes

at most𝑚 times, therefore 𝑂 (𝑛𝑚) in total. The procedure is repeated at most 𝑛/𝑚 times and the

total time complexity is 𝑂 (𝑛2 log𝑛/𝑚).
5.3 4-Approximation Algorithm
We further propose a new algorithm with 4-approximation ratio as shown in Algorithm 3. As far

as we know, this is the first approximation algorithm with constant ratio for the R-GISP problem.

The previous earliest finishing first algorithm does not have a theoretical bound of performance

because choosing the tasks with the earliest finishing time does not consider the duration of tasks

at all. Without a performance guarantee, the ratio between the optimal solution and the result

derived is unbounded (can be arbitrarily large in the worst case), and we cannot gain any insight

about the optimal solution from the results either.

Instead of looking for the earliest finishing time, the new algorithm seeks the shortest interval.

For a set of tasks, the algorithm picks the one with the shortest duration, and removes the tasks

intersecting with the chosen task from the set of tasks. If the total length of chosen tasks is smaller

than (𝑇 + 𝐸𝑚𝑐/𝑃𝑟 )/(1 + 𝑃𝑐/𝑃𝑟 ), then continue the process for the remaining set until the largest set

of tasks whose total length is smaller than the preset limit
𝑇+𝐸𝑀𝐶/𝑃𝑟
1+𝑃𝑐/𝑃𝑟 .

Approximation Ratio. The Shortest Interval First Algorithm has 4-factor approximation for R-GISP.

Proof. Denote the optimal solution for R-GISP as𝑂𝑃𝑇 , and the solution derived by the algorithm

as 𝑆𝐼𝐹 . According to Algorithm 3, once a charging task is chosen, all the charging tasks belonging

to the same grid cell as the chosen one are removed from the pending list. Therefore, there is no

two intervals in 𝑆𝐼𝐹 belonging to the same grid, which infers that |𝑆𝐼𝐹 | is equal to the number of

grids covered by applying the algorithm. If 𝑂𝑃𝑇 contains more than two intervals belonging to the

same grid, the extra intervals can always be removed from the solution and a new optimal value

can be derived with exactly one interval chosen in each grid while maintaining |𝑂𝑃𝑇 |. Due to the

observations, it is sufficient to prove the approximation ratio of the number of intervals between

𝑆𝐼𝐹 and 𝑂𝑃𝑇 to show the same ratio holds for the number of covered grids.

ACM Trans. Sensor Netw., Vol. 1, No. 1, Article . Publication date: April 2021.



18 P. Zhou, et al.

The function 𝑓 maps any interval 𝐼 ∈ 𝑂𝑃𝑇 to an interval in 𝑆𝐼𝐹 according to the following rule,

𝑓 (𝐼 ) =



❶: 𝐼 , if 𝐼 ∈ 𝑆𝐼𝐹 ;
❷: Shortest interval in 𝑆𝐼𝐹 intersecting with 𝐼 ,

if 𝐼 ∉ 𝑆𝐼𝐹 and 𝐼 intersects with intervals in 𝑆𝐼𝐹 ;

❸: The longest interval in 𝑆𝐼𝐹, if 𝐼 ∉ 𝑆𝐼𝐹 and 𝐼

intersects with no interval in SIF.

The above mapping function from𝑂𝑃𝑇 to 𝑆𝐼𝐹 has three cases. For any interval 𝐽 in 𝑆𝐼𝐹 , if 𝐽 ∈ 𝑂𝑃𝑇 ,
then there is only one interval in 𝑂𝑃𝑇 that could be mapped to 𝑆𝐼𝐹 according to the compatible

property of intervals in 𝑂𝑃𝑇 .

If 𝐽 ∉ 𝑂𝑃𝑇 but 𝐽 intersects with intervals in 𝑂𝑃𝑇 , then there are at most 2 + 𝑋 intervals in 𝑂𝑃𝑇

that could be mapped to 𝐽 via function 𝑓 (𝐼 ). As shown in Fig. 10, 𝑋 denotes the number of intervals

𝐼 ′ ∈ 𝑂𝑃𝑇 shorter than 𝐽 and totally covered by 𝐽 . Since 𝐽 is the shortest interval chosen in each

round, the shorter interval 𝐼 ′ could exist but is not chosen by 𝑆𝐼𝐹 only if there has already been an

interval 𝐽 ′ chosen by 𝑆𝐼𝐹 which belongs to the same grid containing 𝐼 ′. In such case, 𝐼 ′ can not be

chosen by 𝑆𝐼𝐹 anymore since there is at most one interval to be chosen in each grid cell. Therefore,

each 𝐼 ′ corresponds to one unique interval 𝐽 ′ in 𝑆𝐼𝐹 , and the summation of such 𝑋 number is no

more than |𝑆𝐼𝐹 |.
For the longest interval 𝐽𝑚𝑎𝑥 in 𝑆𝐼𝐹 , some number of intervals in𝑂𝑃𝑇 are mapped to it according

to the third case of 𝑓 (𝐼 ), which does not intersect with any interval in 𝑆𝐼𝐹 . If such interval 𝐼 belongs

to a grid already covered by 𝑆𝐼𝐹 , there always exists one interval of 𝑆𝐼𝐹 in the same grid which is

shorter than 𝐼 since algorithm 3 always chooses the shortest non-overlapping interval in a new

grid. If such interval 𝐼 belongs to a grid not covered by 𝑆𝐼𝐹 , then adding 𝐼 to 𝑆𝐼𝐹 will violate the

energy requirement Eq. (18) due to the termination condition of SIF. Assuming the number of

such 𝐼 ’s is larger than or equal to |𝑆𝐼𝐹 | + 1, the total duration of all these intervals can not be

smaller than the duration of 𝑆𝐼𝐹 adding up the shortest non-overlapping interval in a new grid (i.e.

the (|𝑆𝐼𝐹 | + 1)-th grid to be covered). However, the algorithm 3 terminates for not being able to

find any non-overlapping interval which satisfies the energy requirement Eq. (18). Therefore, it

is inferred that the total duration of 𝑂𝑃𝑇 violates constraint Eq. (18), which yields an infeasible

solution. Therefore, the number of such 𝐼 ’s can not be larger than |𝑆𝐼𝐹 |.
For any interval (besides of the longest) in 𝑆𝐼𝐹 , 𝑓 (𝐼 ) maps at most 2 + 𝑋 intervals in 𝑂𝑃𝑇 to

it, and the summation of all such 𝑋 is no greater than |𝑆𝐼𝐹 |. For the longest interval 𝐽𝑚𝑎𝑥 in 𝑆𝐼𝐹 ,

𝑓 (𝐼 ) maps at most |𝑆𝐼𝐹 | intervals to it. Since any interval in 𝑂𝑃𝑇 is mapped to an interval in 𝑆𝐼𝐹 ,

|𝑂𝑃𝑇 | ≤ 4|𝑆𝐼𝐹 |. □

A more intuitive way to understand the performance bound is illustrated as follows. Algorithm

2 chooses the interval with the earliest finishing time, whose duration has no guarantee. In the

worst case, completing the first chosen task will use up all the time, causing the performance to be

unbounded. Contrarily, the SIF Algorithm focuses on the interval duration and tends to choose

the shortest non-overlapping interval from each grid. If there exists an optimal solution having no

performance bound compared with SIF Algorithm, then it necessitates numerous small intervals

that can not be chosen by the SIF algorithm due to overlapping. However, as shown in Fig. 10 one

interval chosen by SIF algorithm can overlap with at most 2 + 𝑋 non-overlapping smaller intervals.

Note that, each 𝐼 ′ interval corresponds to one unique interval 𝐽 ′ in 𝑆𝐼𝐹 . Therefore, there can not be

arbitrarily many intervals missed by the SIF algorithm due to overlapping. This intuitively explains

the existence of the performance bound and infers the 4-approximation ratio.
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Fig. 10. Intuitive explanation of the approximation ratio of SIF algorithm.

The cardinality of the completed charing tasks of one MC is proportional to the area of the

sensor networks covered by MCs for fixed sensor density. Since Algorithm 2 has no guaranteed

performance bound compared with the optimal, the serviced network area can be arbitrarily small.

With a guaranteed approximation ratio of 3, Algorithm 3 ensures that the serviced area of the

network is at least one third of the optimal.

The time complexity is analyzed below. For𝑛 charging requests, sorting them, finding the shortest

interval and removing the intersecting ones take O(𝑛 log𝑛), and this process is conducted at most

𝑛 times. The total time complexity is O(𝑛2 log𝑛), which is O( log𝑛

log𝑛/𝑚 ) times of Algorithm 2, but

with the constant approximation ratio.

Discussion. The proposed algorithm aims to maximize the number of grids (area) covered by

MC. However, for grids containing a large amount of charging requests, their requests may not

be satisfied immediately via MC charging. While the proposed algorithms focuses more on the

global perspective, the delay of charging for some local requests is the trade-off. Moreover, the

algorithm focuses on the routing of a single MC, which can be extended to schedule multiple MCs.

Like [57], NDN-based energy aggregation and gathering protocols can be applied to satisfy the

recharging needs for multiple mobile chargers. Eq. (14) can be further relaxed only if the number

of overlapping tasks is constrained by the number of deployed MCs.

6 DYNAMIC SCHEDULING
The previous sections have discussed optimizations based on empirical observations. However, the

dynamic nature of those ambient energy sources may render the previously “optimized” solutions

sub-optimal, when real-time status deviates from the historical average. This section provides an

extension to account for the inherent dynamics during run-time.

6.1 Prediction-based Dynamic Adjustment
The (static) sensor composition and location are studied in the context across a large time scale

(months or years). Nevertheless, some applications may impose non-stopped service requirement

during a short time scale (e.g., flooding that lasts for days). Meanwhile, these situations may lead to

high deviations from the average energy profile, that requires timely re-arrangement; otherwise,

the unmatched energy distribution and deployment plan would easily cause inefficiency or even

waste of ambient energy. Therefore, it is necessary to extend the proposed methods to consider the

dynamic scenarios.

We leverage prediction algorithms to forecast energy income in the short-term and adjust network

planning accordingly. The adjustment is based on two criteria, the predicted harvestable energy

and energy consumption of various tasks in the next time period. State-of-art machine learning

algorithms such as Long Short Term Memory (LSTM) network [58] can be applied for sequence

learning (we benchmark its performance against two other statistical methods in the evaluations).

Based on the energy forecast, the dynamic schemes for the HS position, sensor composition, and

field division are studied.
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Algorithm 4: Stochastic Adjustment Algorithm

1 Input: Predicted energy consumption 𝐸 (𝑡𝑘+1) , accumulated energy consumption 𝐸 (𝑡𝑘 ) , predicted harvestable

energy 𝑝𝑧 (𝑡𝑘+1) , accumulated harvestable energy 𝑝𝑧 (𝑡𝑘 ) for the previous time period, total number of deployed

sensors 𝑛, and the sensor composition for the last time period 𝜂𝑧 (𝑡𝑘 ) , set of sensors N = {𝑛}.
2 Output: Dynamic strategies of working modes for sensors.

3 for 𝑛 ∈ N do
4 for setting={offline, online } do
5 if setting=offline then
6 𝐸 ← 𝐸 (𝑡𝑘+1) , 𝑝 ← 𝑝𝑧 (𝑡𝑘+1)
7 else
8 𝐸 ← 𝐸 (𝑡𝑘 ) , 𝑝 ← 𝑝𝑧 (𝑡𝑘 )
9 Based on 𝐸 and 𝑝 , derive the percentages 𝜂𝑧 (𝑡𝑘+1) for 𝑧-th type sensors by solving the Sensor

Composition Problem.

10 if 𝜂𝑧 (𝑡𝑘+1) < 𝜂𝑧 (𝑡𝑘 ) then
11 Sort 𝑧-th type sensors in the ascending order of the remained energy;

12 Change the first ⌊𝑛 · (𝜂𝑧 (𝑡𝑘+1) − 𝜂𝑧 (𝑡𝑘 )) ⌋ sensors in the order to model 1.

13 else
14 𝑤𝑧 (𝑡𝑘+1) ←

𝜂𝑖 (𝑡𝑘+1 )
𝜂𝑖 (𝑡𝑘 )

· 𝑤𝑖 (𝑡𝑘 ) .
15 Change all 𝑧-th type sensors to the largest working mode with power lower than 𝑤𝑧 (𝑡𝑘+1) ;
16 𝑤𝑧 (𝑡𝑘+1) ← the power of the chosen working mode.

17 𝑖 ← offline working mode, 𝑗 ← online working mode.

18 𝑃𝑅
off
← 1

|𝑖−𝑗 |+1 , 𝑃𝑅on ← 1 − 1

|𝑖−𝑗 |+1 ;

19 with probability 𝑃𝑅
off
, change the mode of sensors to mode 𝑖 , and with probability 𝑃𝑅on, change the mode of

sensors to mode 𝑗 .

Dynamic HS Position. The new position of HS is jointly computed based on the predicted energy

income and consumption, and re-located to the new position following,

argmax

𝜆

(
𝛼 (𝑒1 (𝜆, 𝑡𝑘 ) + 𝑒2 (𝜆, 𝑡𝑘 )) − ||𝜆 −𝐶𝑙 (𝑡𝑘 ) | |2

)
,∀𝜆 ∈ G𝑙 , (26)

where 𝑒1 (𝜆, 𝑡𝑘 ) and 𝑒2 (𝜆, 𝑡𝑘 ) are the average predicted solar and wind energy for the 𝑡𝑘 -th period.

𝐶𝑙 (𝑡𝑘 ) =
∑
(𝑢,𝑣) ∈G𝑙 𝑦𝑢𝑣𝜌𝑢𝑣 (𝑡𝑘 )/

∑
(𝑢,𝑣) ∈G𝑙 𝜌𝑢𝑣 (𝑡𝑘 ), where𝐶𝑙 (𝑡𝑘 ) is the dynamic center of region G𝑙 at

time 𝑡𝑘 since the percentage of wireless-rechargeable sensors 𝜌𝑢𝑣 (𝑡𝑘 ) also change dynamically. The

process of solving Eq. (26) is given in Sec. 4.3. The runtime overhead of this process is proportional

to the frequency 𝑓 of the dynamic positioning. Solving (26) has the time complexity of O(𝑆), so
the total time complexity is in the order of O(𝑓 𝑆).

Dynamic Sensor Composition. According to the predicted energy profile, the sensor composition

problem can be solved by applying the method proposed in Sec. 3. The modes of sensors are

classified into several categories according to the power consumption of different states [43]. If the

percentage of one kind of sensors is larger than the previous percentage, some of the abundant

sensors are turned into sleeping mode to save energy, while the energy harvester can still collect

energy. The sensors temporarily wake up to utilize the harvested energy, enable more efficient use

of the currently abundant ambient energy.

For fixed energy consumptions and the deploying cost of sensors, solving the sensor composi-

tion problem should reach appropriate percentages of sensors regarding the energy income, i.e.,

higher percentage of one kind of sensors if the corresponding harvestable energy is higher; lower

percentage if the energy is less. Therefore, if 𝜂𝑖 (𝑡𝑘+1) < 𝜂𝑖 (𝑡𝑘 ) (the percentage 𝜂𝑖 (𝑡𝑘+1) of 𝑖-th type

of sensors for the next time period is smaller than the percentage for the previous period), the extra
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sensors turn into sleeping mode in the ascending order of the remained energy. If 𝜂𝑖 (𝑡𝑘+1) ≥ 𝜂𝑖 (𝑡𝑘 ),
the working power of these sensors can be increased to

𝜂𝑖 (𝑡𝑘+1)
𝜂𝑖 (𝑡𝑘 ) · 𝑤𝑖 (𝑡𝑘 ). Compare the updated

power of sensors with the power of each working mode, and the sensors are turned into the highest

working mode whose power is no larger than
𝜂𝑖 (𝑡𝑘+1)
𝜂𝑖 (𝑡𝑘 ) ·𝑤𝑖 (𝑡𝑘 ). These calculated working modes

are the offline adjustment strategies, and the sensors follow this strategy in the next period. This

process needs to compare 𝜂𝑖 (𝑡𝑘 ) with 𝜂𝑖 (𝑡𝑘+1) for 𝑧 types of energy sources in each time interval.

Therefore, the total runtime overhead is O(𝑧𝑓 (𝑛 +𝑚)3𝑛2).
Stochastic Online Adjustment. Note that the machine learning algorithms may perform poorly

facing unexpected changes of ambient energy and urgent tasks. E.g. the data analytics reflect obvious

increment of prediction errors for solar irradiance during summer due to frequent thunder storms.

Similarly, wind power also exhibits unforeseen increment of wind speed as a normal deviation

from the seasonal trend. To better utilize the real-time with predictions for better decisions, we

further develop a stochastic online algorithm that can alternate between the offline and online data.

The offline and online modes are the dynamic working modes of the sensors determined based on

the predicted and actual energy consumption and harvestable energy.

Note that it is not designed in an optimal sense that should respond perfectly to abrupt changes

(either looking backwards or forwards), but with certain probabilistic measures to avoid being

trapped at a previous optimum, and make necessary explorations of the new energy patterns.

Based on the cumulative power of harvested energy and energy consumption in the past period,

the sensor composition problem is solved online. The offline mode is determined by the predicted

data tending to reflect long-term pattern; while the online mode determined by the actual data

tends to reflect abrupt changes. These two modes have their own advantages, which motivates

the combinations of these two schemes. In order to coordinate the offline and online strategies, a

probability is introduced, which indicates how likely sensors would change to the mode regulated by

the policy. Different integer numbers represent certain working modes, where mode 1 represents the

sleeping mode and larger number corresponds to working mode with higher power consumption.

If the offline and the online mode for one sensor is 𝑖 and 𝑗 respectively (1 ≤ 𝑖, 𝑗 ≤ 5 [43]), the

probability for offline and online strategy is,

𝑃𝑅
off

=
1

|𝑖 − 𝑗 | + 1 , 𝑃𝑅on = 1 − 𝑃𝑅
off
. (27)

In the trivial case, if 𝑗 is the same as 𝑖 , either one is performed because they are equivalent. If 𝑗 is

different from 𝑖 , larger deviation of 𝑗 from 𝑖 corresponds to larger prediction error of energy, which

increases the probability of selecting the online strategy. Small deviation of 𝑗 from 𝑖 means the

prediction is precise, and the system tends to choose the offline strategy. E.g., if the offline and the

online mode is 1 and 2 respectively, indicating the tendency to reduce the power obeying either

offline or online strategy, the sensors will be kept in low-power mode; if the offline and online

mode is 1 and 5 respectively, indicating urgent requirement for the high-power mode based on

the real-time data, the sensors will have much lower probability to remain idle. The algorithm is

summarized in Algorithm 4 and evaluated in Sec. 7.6. . Since the determination of the offline or

online working mode takes O(1) time, the time complexity for stochastic online adjustment is in

the order of O(𝑧𝑓 (𝑛 +𝑚)3𝑛2).
Note that, the dynamic adjustment of sensor composition is realized via the change of sensors’

working modes, which may not always be available when the desiring working mode exceeds

the largest working mode. Under such circumstances, the network falls short achieve the optimal

sensor composition, and the deficit can be resolved by adding more sensors to the network via

redeployment as shown in [39, 61].
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Algorithm 5: Dynamic Field Division Algorithm

1 Input: The similar-size divisions {G𝑙 } of the field, the sum of predicted harvestable energy 𝑃𝑙 (𝑡𝑘+1) for region G𝑙 ,
and the grids of the field Y = {𝑦𝑢𝑣 }.

2 Output: Dynamic field division based on the energy income.

3 Sort 𝑃𝑙 (𝑡𝑘+1) ; find the region G𝐻 with the highest energy.

4 while 𝑃𝐻 (𝑡𝑘+1) > 𝑃𝑙 (𝑡𝑘+1), ∀𝑙 ∈ {Neighboring regions of G𝐻 } do
5 In the neighboring regions of G𝐻 , find the region G𝐿 with the Lowest energy.

6 Randomly pick 𝑦 s.t. 𝑦 ∈ Y and 𝑦 ∈ (G𝐻
⋂ G𝐿)

7 G𝐻 ← G𝐻 \ {𝑦 }, G𝐿 ← G𝐿
⋃{𝑦 };

8 Update 𝑃𝐻 (𝑡𝑘+1) and 𝑃𝐿 (𝑡𝑘+1) .

Dynamic Field Division. Previously, Algorithm 1 can divide the field of arbitrary shapes into

similar size sub-regions. To adapt to the dynamic adjustment of sensor compositions and make

better usage of the varying energy distributions across the field, dynamic field division is proposed.

The algorithm jointly considers the size and the energy income of each region, and aims to achieve

the division with similar region size and energy input.

By applying Algorithm 1, the field is divided into similar size regions, and each region shares

boundary with at least one neighboring region. Summing up the predicted energy income for

each region finds the total harvested energy in the next time period. The algorithm then starts

from the region with the highest energy income. Among the neighboring regions with the highest

energy income, the one with the lowest energy income is chosen from the neighbors. The goal is

to “dilute” the regions with high-energy concentration into the neighboring ones. A grid of the

highest-energy region is randomly chosen on the contour between the highest-energy region and

its lowest-energy neighbor, and swapped. The process is continued until the highest-energy region

is no longer dominant in the neighborhood. After a round of this process, the new highest-energy

region is chosen again, and repeated until there is no more region is available for swapping. The

procedure is summarized in Algorithm 5.

The algorithm has time complexity O(𝑘2). For 𝑞 regions, sorting takes O(𝑞 log𝑞), since each
swapping process terminates until the highest-energy region is no longer the highest among its

neighboring, then each grid can only be swapped at most once, and the total swapping takes time

O(𝑘2). Since 𝑞 log𝑞 is smaller than 𝑘2, the total time complexity of the algorithm is O(𝑘2).
6.2 Joint Optimization
There are opportunities for further improvement depending on the energy income in the short-

term. For example, when ambient energy is sufficient, the role of wireless-rechargeable sensors is

weakened so an ideal solution is to get them recycled. Since it is difficult to retrieve those sensors

from the outdoor environments, a reasonable way is to deactivate some of them via sending control

signals in order to save the subsequent maintenance cost of the MC. On the other hand, deactivation

reduces the utility of sensors. Thus, there exists a tension between these conflicting objectives in

the framework between #1 sensor composition problem and #2 HS deployment. Here, we optimize

them jointly, and adaptively activate/deactivate wireless-rechargeable sensors with the deployment

of HS. Note that #3 of charge scheduling aims to maximize the number of grids being covered by

MC, which is independent with #1,2 since there is no such variable that can affect # 3 and #1/#2

simultaneously. Hence, the joint optimization as shown in Fig. 2 focuses on #1,2.

The utility of one region is defined as the manufacturing cost for all the sensors included in the

area. Since the cost for the already deployed sensors can not be retrieved, the joint optimization

intends to maximize the usage of these sensors. Therefore, in the utility perspective, the percentage

of activated wireless-rechargeable (WR) sensors should be maximized (for #1). On the other hand,
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the objective of HS deployment that minimizes the traveling cost of MC should expect fewer

WR sensors being activated. We formulate it into a multi-objective optimization problem. The

first objective 𝑓1 (Θ) is the utility reduction if the set Θ of WR sensors is deactivated. The second

objective 𝑓2 (Θ) is the traveling cost from the HS to all the WR sensors. The feasible setN comprised

of all the WR sensors.

P3 : min

Θ⊂N
(𝑓1 (Θ), 𝑓2 (Θ)) (28)

Subject to
𝑓1 (Θ) =

∑
(𝑢,𝑣) ∈G𝑙

(𝑛𝑢𝑣𝜂𝑢𝑣3 − 𝜃𝑢𝑣) · 𝑐3, 𝜃𝑢𝑣 ∈ Θ, (29)

𝑓2 (Θ) = 𝛽
[
| |𝜆∗ −𝐶𝑙 | |2

√√√√√√√ ∑
(𝑢,𝑣) ∈G𝑙

𝜃𝑢𝑣∑
(𝑢,𝑣) ∈G𝑙

𝑛𝑢𝑣𝜂
𝑢𝑣
3

− 𝛼 (𝑒1 (𝜆∗) + 𝑒2 (𝜆∗))
]
, 𝜃𝑢𝑣 ∈ Θ. (30)

The optimization variable is the set of activated WR sensors Θ ∈ N , and the objective is

to minimize the cost of utility waste 𝑓1 (Θ) and the traveling cost 𝑓2 (Θ) simultaneously. 𝜃𝑢𝑣 is

the number of activated WR sensors, and 𝑛𝑢𝑣𝜂
𝑢𝑣
3

is the number of deployed WR sensors, whose

difference multiplying the cost 𝑐3 of deploying a WR sensor gives the cost of utility waste. For

a rectangular field, the shortest path traversing 𝑛 sensors is derived as

√
2(𝑛 − 2)𝐷1𝐷2 + 2(𝐷1 +

𝐷2) [9, 53], where 𝐷1 and 𝐷2 is the side length of the field. Therefore, the ratio of the traveling

distance for MC covering sensors in Θ to the distance for MC covering sensors in N can be

approximated by

√ ∑
(𝑢,𝑣)∈G𝑙 𝜃𝑢𝑣∑

(𝑢,𝑣)∈G𝑙 𝑛𝑢𝑣𝜂
𝑢𝑣
3

[9]. Multiplying the ratio with original traveling distance | |𝜆∗ −
𝐶𝑙 | |2 and a scalar parameter 𝛽 (in the unit of $/m) gives the corresponding traveling distance

denoted by 𝑓2 (Θ).
However, since the conflicting nature of 𝑓1 (Θ) and 𝑓2 (Θ), it is difficult to find a bi-optimal

solution. Therefore, the Pareto optimality is considered instead, which represents the set of solutions

that cannot be improved in any of the two objectives without degrading the other one. 𝑓1 (Θ) is
proportional to the number of deactivated sensors. For the same number of sensors, removing the

sensors furthest from the HS leads to Pareto optimality because their charging cost dominates

other sensors. If the number of wireless-rechargeable sensors is 𝑛, the cardinality of the Pareto

optimal set is also 𝑛. We can traverse this set and find the solution with the minimum summation

of Eq. (28). This step can finish within O(𝑛) time.

7 PERFORMANCE EVALUATIONS
We evaluate the performance of the self-sustained framework by a discrete-event simulator devel-

oped in MATLAB and compare with the previous work that depends on single energy source [51].

In the simulation, we use data trace of solar radiation from SOLARGIS [55] and wind power from

NREL [56]

The sensing field has side length of 𝐿 = 2000 m. Time is equally slotted (1 hour) and the average

energy consumption rate of working sensor is 12 J/min. A typical sensing range 𝑟𝑠 is 15 m. Wireless-

rechargeable sensors have Li-Ion battery of 1200 mAh capacity and 3.7 V working voltage with

Δ𝑡 = 30 mins charging time from empty to full [33]. Solar/wind-powered sensors have batteries of

2150mAh and 3.7 V working voltage. The average manufacturing costs of solar-powered, wind-

powered and wireless-rechargeable sensors are quoted from Amazon as $50, $35 and $30 apiece,

respectively. The maximum energy harvesting power for solar-powered sensor and wind-powered

sensor is 2W · h and 1.5W · h, respectively. The maximum energy harvesting power for HS are 2kW

[45]. Note that, although available commercial HS [46] can generate as much as 3.3 𝑘𝑊 with a size
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Fig. 11. Optimal sensor composition and network lifetime.

of 4.9 × 2.7𝑚2
solely depending on solar energy, HS may not assure enough energy supply for all

weather conditions.

We assume re-locating HS consumes energy at 11.5 𝑘𝑊 · ℎ/100𝑘𝑚, which is on the same level of

electrical vehicles [59]. The MC moves at a speed of 100 m/min at an energy consumption rate of 5

J/m. When the percentage of remaining energy for wireless-rechargeable sensor is lower than a

threshold of 20%, they send out requests for recharge. The simulation time is 360 days.

7.1 Sensor Compositions and Lifetime
First, we evaluate the optimal composition of three types of sensors (solar, wind and wireless-

rechargeable) for the minimum total cost and evaluate the network lifetime compared with network

of one energy source. To obtain the energy consumption of different tasks at different time slots in
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the network, we develop a (high-level) simulator of the wireless sensor network using MATLAB
3
.

Energy consumption of sensors is dominated by sensing/computing/communications. Here, we aim

to monitor static targets. E.g., once a target appears in the field, all the sensors within the sensing

range of the target are turned on, with different energy consumption rates. The energy consumption

of the task of monitoring this target is derived by the duration of appearance multiplying the sensing

power and the number of sensors around it. Similarly, we can derive the energy consumption of

other tasks like computing and communication. For the same type of tasks, the average energy

consumption is used as the input of the formulated sensor composition problem together with the

timestamps. The appearance of the targets follow poisson distribution. We rely on the off-the-shelf

Arduino IoT series as the sensing platform: for sensing, the working voltage and current is 5V and

15mA (e.g., ultrasonic sensor), consuming power at 75mW/h [62]; for computation, it features a

low-power ARM Cortex-M0 processor with an average power consumption at 11.2 uW/MHz [63],

and the maximum frequency of the processor is 50 MHz [64], so the estimated energy consumption

of computing is 2016 mW/h. Due to frequency scaling, the actual power consumption could be

lower. The communication module consumes around 12mA at the max voltage of 3.6 V during

transmission at 0 dBm [65], which is 43 mW/h.

Fig. 11(a) demonstrates the number and percentages of 3 kinds of sensors for each grid by applying

RGB heatmap. The color of each grid is determined by an [𝑅 𝐺 𝐵] vector, where 𝑅,𝐺, 𝐵 represent

the solar-powered, wind-powered and wireless-rechargeable sensors respectively. The values are

proportional to the number of corresponding sensors in each grid, which is normalized by the

total number of sensors of their kinds. In other words, the color of each grid is the total number of

sensors deployed and the ratios of each kind. For example, when [1 0 0] is red, only solar-powered

sensors are deployed in the grid; when [0 1 1] is cyan, the same number of wind-powered sensors

and wireless-rechargeable sensors are deployed with no solar-powered sensor.

From Fig. 11(a), it is observed that for the region [100 ∼ 400; 0 ∼ 200] (i.e., the area in 100m ≤
𝑋 ≤ 400m and 0m ≤ 𝑌 ≤ 200m), similar number of solar sensors and wireless sensors and almost

no wind sensors are deployed, since those areas have solar energy whereas lack wind energy; for

the region [100 ∼ 400; 600 ∼ 800], most of the sensors are solar-powered since those areas have

abundant solar energy and no wind energy; for the region [600 ∼ 900; 700 ∼ 900], wind sensors and
wireless sensors have similar number while not many solar sensor, since those areas are abundant

of wind energy and lacking of solar energy; for the region [600 ∼ 900; 900 ∼ 1000], there are many

sensors of all three kinds, since those areas are lacking of both solar and wind energy; for the

region [0 ∼ 300; 900 ∼ 1000], the numbers of different sensors are similar since those areas are

sufficient to provide all kinds of energy. The simulation demonstrates that our framework precisely

selects different ratios of sensors reflecting the ambient energy distribution while minimizing the

total manufacturing cost.

Fig. 11(b) compares network lifetime, which is defined as the time expansion until the first energy

depletion occurs; otherwise, the lifetime lasts the entire simulation time (360 days). Note that some

energy depleted nodes would temporarily turn into sleep mode and wait for energy refill from the

renewable energy or wireless charging. Other nodes with energy can still execute the network tasks

and maintain operation. We compare our framework with some previous works [9, 33, 51, 52]. “All

kinds” means all three energy sources are used referring to the mechanism proposed in this paper.

“Solar+Wireless” [33]means only solar andwireless-rechargeable sensors are used. “Wind+Wireless”

means only wind and wireless-rechargeable sensors are used. “Wireless” [9], “Solar” [51], and

“Wind” [52] represent the previous works that solely depend on one energy source. We alternate

3
Since we generally focus on the performance metrics over a long run, such simulator can take experimental traces, datasets

and hardware readings and is sufficient for our evaluations here
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Fig. 12. Residual energy and minimal number of HS.
through all the combinations and their optimal compositions are computed by the MPM algorithm

[11].

The results indicate having all kinds of sensors is able to maintain network lifetime over 360

days (for most field sizes). It still supports 273 running days for a giant area of 20.8 km
2
(5 times of

the original size). Two types of sensors have shorter lifetime but still much longer than the single

type. The difference among “Solar+Wireless,” “Wind+Wireless” and “Wireless” becomes smaller

when the area increases. This is because, relying on a single energy source is unstable when it

suddenly becomes unavailable, that is more likely for larger field sizes. The lifetime of single energy

harvesting sensor is the worst, which lasts for only about 20 days even for small area of 1.1km2
.

Our framework achieves at least 3 times longer lifetime compared with traditional network of a

single energy source. Meanwhile, the network depending on solar energy usually enjoys longer

lifetime, since energy density of solar radiation is larger and the radiation is more consistent than
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Fig. 13. Grid coverage percentage and covering area by MC.
wind. It is also observed that combining more than 2 types of energy harvesting sensors with the

wireless ones is more beneficial for extending network lifetime.

7.2 Energy Output and Traveling Cost of MC
In this subsection, we evaluate network energy status using different methods to deploy HS and

the number of HS needed to satisfy the energy demands of MC. Fig. 12(a) demonstrates the total

residual energy of 𝑞 HS for different deploying strategies. The residual energy is the average

energy remaining of the 𝑞 HS over 360 days. It is difference of the harvested energy and the energy

dissipated to replenish the MCs.

Fig. 12 compares a few possible strategies of deploying HS. “Joint” is proposed in Section 4, which

is compared with “Joint DDR”, applying another field division algorithm named DDR proposed

in [60]. The DDR mechanism divides the field into a series of equal-size quadrilaterals. Note that,
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“Joint” and “Joint DDR” both jointly consider the energy output and the traveling cost of MC,

while the only difference is the field division. “Max Energy” deploys HS at the position with the

maximum energy. “Min Travel” deploys HS at the centroid of each region. “Random” deploys 𝑞 HS

randomly in the field following a uniform distribution. We can see that residual energy grows with

an increasing number of HS for all cases. For all four 𝑞 values, “Joint” always has the maximum

energy storage while “Random” is the worst. For 𝑞 = 5, 7, the residual energy of “Min Travel” and

“Random” is less than 0. When 𝑞 is small, it is more important to wisely pick the locations of HS,

since one false deployed HS is less likely to be compensated by other HS. “Max Energy” is always

better than “Min Travel” since the harvested energy is much larger. The difference between the

strategies becomes less obvious when 𝑞 increases, because reduced region size weakened the impact

from location choices. “Joint DDR” performs relatively better for small 𝑞 values since the influence

of field division is less obvious with small 𝑞’s. By balancing the charging demands via carefully

dividing the field into as many as similar-size square shapes, the proposed field division algorithm

increases the retained energy of HS by at least 51%.

Fig. 12(b) shows the relation between the minimal number of HS needed to maintain energy

balance. For a field of certain area, the minimal number of HS needed to maintain energy balance

is evaluated for different deploying strategies. Maintaining energy balance needs to ensure the

continuous operation. It shows that the minimal number of HS for “Joint” increases almost linearly

with the increase of field size. The number for “Max Energy” is larger than “Joint” but still linear. “Min

Travel” and “Random” increase much faster. “Random” grows the fastest. “Joint DDR” approaches

“Joint” for small field area and increases rapidly as the field area expands, requiring 145% more HS

at the end, which validates again that the proposed field division algorithm performs significantly

better for large area. This is because random deployment tends to leave coverage holes for some

regions and cause network disruption.

7.3 Network Coverage and Charging Capability
Finally, we evaluate network coverage and charging capability of an MC by comparing with the

previous work that charges all sensors in [47]. Fig. 13(a) demonstrates coverage percentage with

the number of MCs in terms of grids. The coverage percentage is the ratio of grids covered by

MC to the total number of grids. “Max Cover” applies the maximum coverage charging algorithm.

It jointly schedules the activities of charging sensors and replenishing the energy of MC for the

maximum coverage rate of different grids. “All Cover” is the previous approach in [47], which

fulfills all charging requests in one grid first before moving to the next one. It is observed that

our algorithm exhibits significant improvement for the coverage percentage of grids. “Max Cover”

achieves 100% coverage ratio while “All Cover” achieves at most 58%. The coverage ratio increases

for our algorithm when the number of HS increases, since larger 𝑞 means less traveling cost for

MC to replenish its own energy and also smaller size of grids. “Max Cover” does not achieve 100%

sometimes with a few MCs, because of large energy request number vs. charging capability.

Fig. 13(b) shows the covering capability of one MC for different charging algorithms. Covering

capability is represented by the largest area one MC can serve (timely response to all the requests).

As shown in Fig. 13(b), the proposed “Max Cover” algorithm yields over 2 times charging capability

for one MC than the “All Cover” algorithm, i.e., the charging capability is doubled. The charging

area is not affected much by the increase of the grid size whereas it is not the case for “All Cover.”

This is because larger grid means more sensors to be charged in one grid if “All Cover” is applied.

This would then postpone charging in other grids. When 𝑞 increases, both algorithms have larger

covering area because more HS means shorter traveling distance for the MC, therefore it can spend

more time in charge as well as enlarge its covering area.
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Fig. 14. Prediction performance for energy output.

7.4 Energy Prediction
We compare three energy prediction methods for the solar and wind harvesting income within a

year in Fig. 14. LSTM is a popular recurrent neural network [58] that is widely used for sequence

learning in time series prediction, language models, etc. It is compared with another two popular

methods of MA and ARIMA via the metrics of Root Mean Square Error (RMSE). The LSTM has 2

hidden layers and 6 backward time steps, MA has window size of 1 and ARIMA has lag order 6.

Both figures in Fig. 14 show that the LSTM is the best with smallest average RMSE of 27.3. The

maximum RMSE is observed during summer and winter for solar and wind energy respectively,

which is considered to be caused by fiercer fluctuations of solar irradiance and wind speed in these

seasons.
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Fig. 15. The increased energy harvested through dynamic HS position

7.5 Dynamic HS Placement
We evaluate the additional energy harvested by dynamically adjusting the HS compared with the

static deployment [54] for an extension of 500 days. Fig. 15(a) shows that the harvested energy

increases by an average of 19%. Note that, the increased percentage is inversely proportional to

the amount of energy harvested. E.g., in the April and June, the total harvested energy is the most

but the corresponding percentages are the lowest, since the optimal placement of HS has lower

impact when the ambient energy is abundant. Since the moving of HS also costs energy, Fig. 15(b)

compares the increased energy via dynamic positioning with the cost of moving HS and the net

income of energy. After deducted by the moving cost, the average percentage of energy increment

is 15%, and achieves the maximum of 22.6% increase in December and the minimum of 10.4% in
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Fig. 16. Comparison of static and dynamic sensor composition adjustment.

June. We can see that dynamic placement of HS fitting to the energy distribution is beneficial to

the energy output across the year.

7.6 Dynamic Sensor Composition and Joint Optimization
Fig. 16 evaluates the performance of dynamic sensor composition and joint optimization. The

optimal sensor composition is derived based on the energy income and consumptions. Since we

adopt average consumption rates, the optimality then depends on how well the prediction engine

performs. It is demonstrated that the state-of-the-art methods like LSTM achieve minimum testing

error on the simple time serial data. Thus, sensor composition can be considered as a near-optimal

solution here. The resilience of the stochastic adjustment algorithm to the prediction errors is

evaluated by applying ARIMA and MA as the prediction engines. In accordance with Fig. 14, higher

ACM Trans. Sensor Netw., Vol. 1, No. 1, Article . Publication date: April 2021.



32 P. Zhou, et al.

5 10 15 20

Field Area (km
2
)

0

50

100

150

200

250

300

350

L
if
e

ti
m

e
 (

d
a

y
)

Relation between lifetime and region area

Original
1day,int20
1day,int10
2days,int20

1day,int5
2days,int10
2days,int5

(a) Lifetime of the networks for synthetic data testing extreme weather conditions.

All kinds S+Wr[29] Wr[9] S[45] Wd[46]

Different mechanisms

0

10

20

30

40

50

60

C
o
s
t 
(1

0
4
 $

)

Cost of different mechanisms

total cost
tier 1 cost
tier 2 cost
tier 3 cost

(b) Comparison of costs for different mechanisms considering all three tiers of optimization.

Fig. 17. Lifetime of the network and the comparison of costs.

prediction errors result in shorter lifetime of the network. Meanwhile, the performance tends

to be impeded more significantly for larger area since large-scale network is less resilient to the

prediction errors. Compared with the optimal (i.e. no prediction error), the algorithm based on

LSTM loses 7.9% lifetime while ARIMA and MA loses lifetime by 25.5% and 30.8% respectively.

The results demonstrate that making dynamic adjustment in the network offers further benefits

to extend network lifetime. Fig. 16(b) shows the results of joint optimization, where the cost due to

a waste of facility
4
and the traveling are unified in $ and treated equally with the same weights.

The average optimal percentage of working wireless-rechargeable sensors is 70%, saving 28% cost

4
Since the sensors are already deployed, the removals of them from the network cause the waste of the established facilities.
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compared with the case of static sensor composition. Note that, the cost increases as the percentage

drops further since the waste of already established facility dominates in this scenario.

7.7 Network Robustness under Extreme Weather Conditions and the Cost of Different
Mechanisms

In this subsection, we further test the performance of networks under extreme weather conditions

as shown in Fig. 17 (a), where the harvestable energy is absent continuously and periodically.

Moreover, in Fig. 17 (b), a more comprehensive evaluation of the cost related with all three tiers of

the optimization is conducted, which compares the proposed framework in this paper with four

other benchmarks.

As shown in Fig. 17 (a), the lifetime of the network is tested for the original realistic data [55, 56]

and the synthetic data. The extreme weather conditions such as continuously rainy days are

simulated via the synthetic data, modified based on the realistic data. In the legend of the figure, “1

day, int 20” means the power of the harvestable energy is set to 0 𝑘𝑊 · ℎ for 1 whole day for every

interval of 20 days. The other legends are defined in the same way. This figure verifies that, the

continuous absence of ambient energy does affect the lifetime of the network, while the lifetime

reduces further for higher frequency of the absence. The frequencies of the energy absence are 0,

0.05, 0.1, 0.1, 0.2, 0.2 and 0.4, which is derived by taking the ratio of the absent days and the period.

Note that, if the energy is absent for 2 days, the lifetime reduces as much as 70 %. However, for “1

day, int 20” case, the reduction is only 10%.

Fig. 17 (b) compares the tier 1 manufacturing cost, tier 2 traveling cost, and tier 3 MC cost.

Note that, tier 3 aims to maximize the area being covered by MC, whose performance is evaluated

by the number of MC needed for satisfying all the energy requests. The unit cost for one MC is

set to 1000 $ [31, 32], considering the cost of building the automatic battery swap system, the

Field Programmable Gate Array (FPGA) scheduling the mobile computing tasks, and the wireless

charging system. The proposed mechanism in this paper is compared with benchmarks of other

mechanisms as mentioned in Section 7.1. The shown cost represents the minimal required cost

for the corresponding network running for at least one month. “All kinds” achieves the minimal

total cost among the five mechanisms, and combining different sources together induces lower cost

compared with sole energy source. The proposed mechanism can save at least 40% total cost. The

mechanism solely depending on wireless charging has lower cost compared with the mechanisms

solely depending on solar or wind energy, since the wireless charging is more reliable and consistent.

This simulation indicates the potential of further reducing the cost by integrating more harvestable

energy sources.

8 RELATEDWORK
8.1 Energy Conservation
There is a plethora of literatures on energy conservation that improves energy efficiency using

duty cycles, opportunistic data transmission and energy-efficient data collection. Here, we discuss

some representative works [1, 2, 13–16]. In [13], a new MAC protocol is proposed to reduce the

energy consumption while balancing the energy conservation and contention latency. In [14], a

tracking system is implemented which can adaptively adjust the sensitivity to balance surveillance

performance and energy-awareness. Energy conservation is explored in [15] to jointly consider

coverage and connectivity. In [1], an opportunistic data transmission strategy is proposed to reduce

the latency and redundancy for the low-duty-cycle sensors. In [2], an on-demand prediction mech-

anism is proposed to forecast the wake-up time of sensors, so as to reduce the energy consumption

while idling. Data gathering also plays a key role in network-wide energy consumption. In [16],

both centralized and distributed data collection schemes are studied to achieve energy-efficient,
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delay-aware and lifetime-balancing. Yet, these works only focus on extending the battery lifetime

rather than providing continuous operation.

8.2 Energy Provisioning
Wireless Charging. As a promising way to transmit electromagnetic energy to sensors via the air

without interconnecting cords, wireless charging technologies can be classified into inductive

coupling, magnetic resonance coupling, and RF radiation [17–19]. Inductive coupling [17] delivers

power with the shortest range (millimeters to centimeters), but is the least hazardous to human

health. Magnetic resonance coupling [18] has more complicated structure, but can charge multiple

devices simultaneously without requiring the line-of-sight in a medium range (centimeters to

meters). RF radiation [19] can charge mobile devices in a long range (meters to kilometers), but it

has low charging efficiency and requires line-of-sight.

For the static sensors deployed in complex environment (i.e. lacking of line-of-sight conditions),

their batteries can be efficiently replenished with inductive or magnetic coupling charging, by

employing anMCwithwireless-charging coils and high-capacity battery [3, 9, 20–25]. In [3], sensors

are partially charged such that more sensors can be charged within unit time, thus jointly increases

the sensor lifetime and reduces the traveling cost of the MC. In [9], the energy provisioning issues

of WSN are studied to keep track of mobile targets with high precision. In [20], a real-time energy

status protocol is developed to schedule wireless charging based on residual lifetime and moving

distance. In [21], the optimal charging bundle of MC is generated to balance the charging efficiency

and the trajectory distance. In [22], the MC selectively charges sensors to extend the lifetime of

the network and coverage of the MC while assuring the target 𝑘-coverage. In [23], the energy

provisioning problem is addressed by studying the deployment of static wireless-rechargeable

tags and regulation of the mobile tags. In [24], authors choose the charging sensors, charing time,

and activation time to maximize the quality of monitoring for stochastic event based on known

probability of arriving distribution. From the safety perspective, energy successfully transferred

through the air is balanced with electromagnetic radiation to avoid health hazard [25].

As discussed in the survey [26], the dispatch strategies of MC can be classified as offline/online

planing; single/multiple planning; centralized/distributed planning. In [27], the authors derive

the necessary and sufficient conditions for a single MC to maintain the infinite network lifetime

considering the periodic patterns of residual energy levels of sensors. In [28], for multiple MCs,

authors proposes a polynomial algorithm to determine the scheduling and the minimal number of

required MCs for both homogeneous and heterogenous charging frequencies. Different from the

previous two paper addressing offline planning, in [29], an algorithm always serving the request

with the smallest sum of the traveling time and charging time is proposed to serve the arriving

requests in an online manner. To reduce the energy consumption of acquiring global knowledge

and increase the scalability, in [30], the MC finds the path following the fastest descent rate of

the charger’s battery levels, which is performed distributedly. These works consider wireless

energy as the sole source to the WSNs, which does not benefit from harvestable energy and lacks

self-sustainability.

Hybrid Energy. Upon realizing the limitations of wireless energy (potential hazards/close range),

the work of [33] takes a step back to consider a hybrid combination with ambient energy [23, 34, 35].

In particular, the network consists of wireless-rechargeable sensors with cluster heads powered by

solar [33], which aims to mitigate the dynamics in ambient energy source with controllable wireless

energy, as well as improve the power density on some heavily loaded sensors. In additional to solar

energy, other ambient sources can be exploited and possibly complement each other [34, 35]. In

[34], a multi-source power unit is designed to charge sensors with maximum efficiency and can

be easily adapted to any combination of harvestable energy. In [35], a communication system is
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designed to achieve the connection between RF-powered sensors and the Internet. However, it

lacks a general framework that considers multiple energy sources (ambient/wireless charging). In

contrast, this work can be extended to account for all known methods for energy provisioning.

Energy Management. Some previous works [36–39] have considered the energy management

of energy harvesting sensor networks in a dynamic manner. In [36], authors considered a more

sophisticated characterization for the energy of harvested sensor network and the varying harvest-

ing opportunity among different nodes to ameliorate the energy management problem. In [37], the

authors studied the energy management of wearable IoT devices depending on harvestable light

and body heat energy to achieve the anticipated energy output. In [38], an adaptive duty-cycling

mechanism is proposed to perform the energy neutral operation for sensors and provide sufficient

energy to them in face of the dynamically temporal nature of harvestable energy. In [39], an adaptive

power conservation protocol is proposed to realize efficient data propagation for heterogenous

sensor networks accepting redeployment of sensors. However, these works can not address the

energy management of spatially distributed heterogenous energy and generate the maximal energy

output with the minimal manufacturing cost.

9 CONCLUSIONS
In this paper, we propose a new self-sustained WSN via integrating multi-source energy harvesting

with wireless charging. First, we derive the optimal composition of different types of sensors

by solving a maximum flow problem to minimize the budget. Second, we jointly consider both

energy distribution and moving cost to deploy HS in the field of any arbitrary shape. Third, we

propose a scheduling algorithm for the MC to coordinate wireless charging and its own energy

replenishment at HS, prove its NP-hardness and propose a 4-approximation algorithm. We propose

a stochastic algorithm to dynamically place HS, and jointly optimize different objectives. Finally,

we demonstrate that the framework can significantly extend network lifetime, adapt to dynamic

energy distribution and improve energy efficiency through extensive simulations.
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