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Abstract—Smart transportation shall address utility waste, traffic congestion, and air pollution problems with least human intervention
in future smart cities. To realize the sustainable operation of smart transportation, we leverage solar-harvesting charging stations and
rooftops to power electric autonomous vehicles(AVs) solely via design. With a fixed budget, our framework first optimizes the locations
of charging stations based on historical spatial-temporal solar energy distribution and usage patterns, achieving (2 + ¢) factor to the
optimal. Then a stochastic algorithm is proposed to update the locations online to adapt to any shift in the distribution. Based on the
deployment, a strategy is developed to assign energy requests in order to minimize their traveling distance to stations while not
depleting their energy storage. Equipped with extra harvesting capability, we also optimize route planning to achieve a reasonable
balance between energy consumed and harvested en-route. As a promising application, utility optimization of shared electric AVs is
discussed, and (2k+1)-approx algorithm is proposed to manage k vehicles simultaneously. Our extensive simulations demonstrate the
algorithm can approach the optimal solution within 10-15% approximation error, improve the operating range of vehicles by up to 2-3
times, and improve the utility by more than 50% compared to other competitive strategies.

Index Terms—Optimal scheduling, energy harvesting, vehicle charging, shared autonomous vehicles, approximation algorithm
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1 INTRODUCTION

The future smart cities exemplify how computation and
information flow are coordinated between end devices
and infrastructure for automation. Transportation is one
of the driving impetus for this evolution as most of the
metropolises like Los Angles, Beijing and New Delhi suffer
from persistent traffic congestion, which remains as one of
the major contributors to air pollution. Studies found that
traffic congestion is responsible for 56 billion pounds of
carbon dioxide pollution [1] and this number keeps climb-
ing. Electric vehicles have been a green solution and their
possession enjoys a rapid growth recently. Meanwhile, the
recent advance in artificial intelligence makes it possible to
learn from end-to-end for autonomous driving [2], which
rises as a promising, or presumably, the ultimate solution to
traffic congestion [3]. A marriage of these two powerhouse
technologies would reshape the auto industry as major man-
ufacturers like Ford, BMW and Volve have already made
their moves to go electrification with autonomous designs.
Unfortunately, the relatively stagnant progress in battery
technology fails to catch up with the rising demands in
mileage and computation, especially the arrays of sensors
are mounted and commanded by power-hungry computing
units like GPUs on these battery-powered platforms for real-
time processing [2]. The data from sensors like cameras and
LiDARs are fused and processed by GPUs, which could
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generate more than 12 GB of data each minute and consume
about 2.5 KWh [4]. With the intensive computations on-
board (consumes about 10% energy for the current Tesla
Model 3), a fully-charged autonomous vehicle (AV)! is
expected to last much less than the standard mileage [6].
While energy-efficient neural computation is still at its early
stage [5], charging is of paramount importance to promote
AV as a first-class citizen in the future smart cities. This
pushes back on the service provider to offer better coverage
of charging stations, operation management, guidance of
route planning and deliver them as a whole package to the
users. Thus, a solution to the charging problem should entail
a holistic approach starting from the charging stations, and
assist the AVs with efficient algorithms at the infrastructure
backend for optimized decision making.

1.1

An immediate solution is to build more charging stations
to satisfy the emerging energy demands. For instance, Tesla
aims to make 99% of the US population within 150 miles
of a charging station. Yet, driving 3 hours for a charge is
obviously not a solution, let alone the mileage for return-
ing. So far, the cost of building and maintaining dedicated
charging stations still remains prohibitive for individual and
private business owners. Further, inappropriate selection of
locations and the dynamics of demand may lead to either
low utilization or congestion [7], [8]. These situations cause
highly unbalanced distribution of resources and ultimately
a loss to the service provider. To this end, existing works

Retrospect: Solutions with the Main Power Grid

1. We briefly denote “electric AV” as “AV” hereafter for conciseness,
since the AV powered by combustion engine is not considered in the

paper.



focus on pricing/incentivizing strategies [7], [8], [9], place-
ment of charging stations [10], [11], [12], or energy saving
from the user perspective [13], [14]. Users are modeled as
self-interested agents to maximize the expected profits of
selecting the charging stations [7], [8]. A greedy algorithm
is proposed to maximize the charging demand [10]. The
mutual interactions among charging stations, drivers, traffic
congestion and queuing time are jointly considered in the
placement of charging stations [11]. A bi-level optimization
model is proposed to arrange the distribution of stations by
maximizing the revenue and minimizing the user dissatis-
faction [12]. A neural network is used to predict the driving
behaviors which extends the mileage by accommodating the
controllers [13]. An automated control system is proposed to
manage power consumption, improve the battery lifetime
and driving range [14].

These strategies focus on the scenarios that the charging
stations are connected to the main power grid. Yet, the rapid
adoption of AVs would bring excessive load and instability
to the grid. With opportunities to generate energy off-the-
grid, in this paper, we pursue new directions to power the
AVs by renewable energy, such as the solar power. Ambient
energy is adequate to power self-sustainable wireless sensor
networks as shown in [15]. Among the ambient energy,
solar is an ideal, green source as they can be harvested
for free after a one-time investment. Its success for energy
provisioning in distributed systems has been proven in
wireless sensor networks [17], [18], [19]. For AVs, it not
only alleviates the load to the main power grid [20], but
also offers distributed charging opportunities while people
are at work. Fig. 1 demonstrates some existing prototypes
of this innovation. Charging stations installed with large-
size solar panels can serve multiple AVs simultaneously.
The platform can be made mobile and relocated to new
locations depending on the distributions of ambient energy
or emerging demands from users [27]. Similarly, equipped
with solar panels on the rooftop, AVs can harvest extra
energy anywhere during daytime.

Fig. 1: Prototypes (a) mobile solar-powered charging sta-
tion [27] (b) car with solar rooftop from Toyota.

1.2 Contributions of this work

These innovations laid the foundations to power au-
tonomous vehicles with renewable energy in the future
smart cities. Its success should not only rely on hardware
integration, but also tackle a series of challenges during op-
eration facing the uncertainties in the ambient energy source
and user demands. Obviously, the locations of charging

stations require careful planning based on the cost profile
of rental and daily operation. They should also satisfy the
dynamic distribution of charging requests to avoid low uti-
lization or congestion. With external capabilities to harvest
solar energy, the AVs can also jointly plan their routes to
avoid energy depletion en-route and merge this capability
into the entire energy supply chain for system-wide opti-
mization. A recent work [16] has developed a mechanism
to plan the route of solar-powered vehicles following the
strength of solar radiation. We further refine this approach
and integrate it with the optimization framework.

Furthermore, this paper also studies a new framework
of shared AVs as an actual application of the proposed
autonomous vehicle network solely depending on solar
energy. In [22], authors propose novel charging strategies of
PEV(Plug-in Electric Vehicle)-based taxis as a game model,
which formalizes the problem of pricing the power con-
sumption to realize risk-averse decisions on PEV charging
considering the aging of transformers. Without depending
on drivers, the shared AVs can operate perpetually through
days, weeks, even months only if they have enough energy.
By replenishing the energy at the solar-powered charging
stations, such a system of shared AVs can operate without
human intervention, which is a feasible solution for public
transportation for future smart cities. However, due to the
non-neglected time required to charge the electric AVs, it is
challenging to maximize the utility achieved by each AV
while sparing enough time for charging the battery. We
intend to address such issues for this novel application in
this paper and propose efficient scheduling algorithms for
one and multiple AVs with guaranteed performance bound.

In particular, this paper aims to offer a full-stack so-
lution by: 1) optimizing the locations of charging stations
by considering extra traveling distance to get charged and
spatial-temporal energy distribution of solar power; the
historical distributions are analyzed using machine learning
algorithms to generate predictions; 2) conducting opera-
tion management to establish new stations for emerging
demands and pruning the ones with low utilization; 3)
assigning the charging requests to different stations based
on the real-time energy status in order to, avoid congestion
and balance energy income/expenditure; 4) planning routes
of the AVs to achieve a balance between energy consumed
and harvested en-route with the solar-harvesting rooftops;
5) scheduling the trips served by shared AVs to maximize
the overall utility while assuring the energy constraint.

Note that, although there are literatures having studied
the charging station placement, energy request assignment,
and route planning of vehicles, there are few works having
addressed these problems jointly considering the income
and expenditure of harvested solar energy to the best of
our knowledge. Directly utilizing existing solutions can-
not satisfy the design of a holistic electric AV system solely
depending on solar energy. Therefore, it is necessary to con-
sider these aspects simultaneously in the new scenario and
propose feasible solutions with guaranteed performance
bound. The contributions of this paper are summarized in
the following.

o We propose a framework to determine the optimal
locations of charging stations that maximizes the



energy output while minimizing the driving distance
to the charging stations. Based on time series predic-
tions from recurrent neural networks [37], a (2 + €)-
approximation algorithm is proposed.

e We formulate the charging assignment problem and
develop an efficient solution using dynamic pro-
gramming, based on the predicted solar income and
waiting time of users.

e We develop a route planning algorithm achieving a
balance between energy consumed and harvested en-
route, given the potential capability to harvest solar
energy from the vehicle rooftop.

o We propose two approximation algorithms with con-
stant performance bound 2k + 1 to maximize the
utility achieved by k AVs operating simultaneously,
which considers the time spent for charging AVs in
the optimization.

o Based on the real energy traces from [35], our exten-
sive simulations not only demonstrate the algorithm
can achieve an average of 30-50% savings compared
to the competitive algorithm [36], with 10-15% ap-
proximation error, but also improve the operating
range of the AV by 2-3 times. For the simulation of
shared AVs, our algorithm achieves more than 60%
utility improvement compared with the benchmark
and achieves about at least 50% of the optimal.

The rest of the paper is organized as follows. Sec. 2
studies related works. Sec. 3 presents the motivation and
system overview. Sec. 4 studies the deployment of solar-
harvesting charging stations. Sec. 5 studies the assignment
of charging requests. Sec. 6 discusses the routing of AVs con-
sidering charging and harvesting energy. Sec. 7 addresses
scheduling of shared AVs via approximation algorithms.
Sec. 8 evaluates the performance of the proposed framework
and Sec. 9 concludes the paper.

2 RELATED WORKS

In [7], authors design a new charging cost mechanism to
realize the equilibrium of assigning charging requests in the
face of selfish users. The paper minimizes the congestion
of electric vehicles at the charging stations and maximizes
social efficiency. In [8], authors treat the charging stations
and EV users as self-interested agents that aim to maximize
their own profit and minimize the impact on their schedule
in the face of the congestion of stations. They propose a de-
centralized mechanism that scales well compared with the
centralized one, which realizes the load balance on stations.
In [9], an incentivizing mechanism based on multi-armed
bandits is proposed to motivate users of shared vehicles to
rebalance the vehicles, which considers the heterogeneous
levels of difficulties of different tasks. In [10], authors con-
sider the charging station placement problem for the shared
EVs. They propose an approximation algorithm intended
to maximize the satisfied charging demands for the NP-
hard problem, i.e., POI coverage and local charging demand.
In [11], authors propose algorithms to solve the charg-
ing station placement optimization in distribution systems
using genetic algorithms. The problem is formulated as a
non-differential combinatorial optimization problem, which

minimizes the system loss while satisfying the capacity
and system operation constraints. In [12], authors consider
the placement of public EV chargers across the city, which
maximizes the overall revenue of charging stations while
minimizing the driver discomfort. The problem is formu-
lated as a bilevel optimization problem, and an alternating
framework is proposed to realize a local minimum. The
existing works about charging station placement mainly
focus on resolving the congestion, maximizing revenue, and
minimizing vehicle traveling. However, to the best of our
knowledge, no solution has been proposed to deploy the
system consisting of solar-powered charging stations, whose
placement tends to achieve the aforementioned objectives
while considering the spatial distribution of harvestable
energy. Therefore, the existing methods can not be directly
utilized to address the newly proposed problem.

In [13], authors propose a context-aware methodology
to predict the driving behaviors, which can be used to
manage the battery use of EVs better. Based on a nonlin-
ear autoregressive model of artificial neural networks, the
behaviors of drivers can be estimated with low loss, and the
energy of EVs can be saved. In [14], authors jointly consider
the energy use of engines, the heating, ventilation, and
air conditioning in the battery management system, which
improves the range of EVs via climate control of HVAC
devices. In [16], authors propose a route planning method
to balance the energy consumption and harvesting of solar-
powered EVs. A power-aware optimal routing maximizes
the amount of harvested energy choosing from candidate
routes based on the bisect k-means clustering method. In
[17], authors utilize weather forecasts to choose the time
to satisfy the energy demands considering current energy
and future energy supply in the energy harvesting system.
A model is formulated to transfer the weather forecasts to
solar energy harvesting predictions. In [21], authors study
the design of a 4-tier system for autonomous electric vehicle
sharing in terms of feasibility concerning profit, operations,
engineering, and marketing. They conclude that the shared
AVs are feasible considering the profits and emissions com-
pared with the ordinary vehicle depending on fuels.

However, recent works mentioned above have only con-
sidered the charging stations operating based on power
grids. This paper studies the scenario that the AV and charg-
ing stations are only powered via solar energy, which needs
to jointly consider the charging requests and energy distri-
bution placing the stations. Though some works consider
the scheduling of shared AVs, they have not considered
maximizing the utility of one or multiple AVs considering
the time spent for charging due to the specialty of EVs.

3 PRELIMINARY

We motivate this study based on the data analytics of solar
data from NREL [29].

3.1 Motivation

From the energy measurements, we utilize the irradiance
formulaes in [25] to calculate output power from the solar
panel. For a period of one month, the output power of a
solar charging station is compared with the energy needed



for satisfying the dynamic charging requests as shown in
Fig. 2. The solar data is acquired in Aug. 2018 at El Paso,
Texas. The number of charging requests is based on the
daily traffic patterns obtained from [28]. We set (assume)
a ratio of the electric AVs to the total traffic volume, and
apply a moderate-size station equipped with 3-by-5-meter
(i.e. 15 m?) solar panel that generates electricity with 2.3
kW - h, and stores the energy into a battery with 21.6 kW - h
capacity according to [27]. The measurements are based on
two representative locations: Location #1 in suburban area
and #2 in downtown area. Fig. 2 shows the comparisons of
the harvested solar energy vs. the consumed energy with
charging demands at two different locations®. The residual
energy is the net income of solar energy after deducted from
the energy used to charge the AVs. Fig. 2 shows that there is
sufficient solar energy in location #1 but insufficient in loca-
tion #2. There are two observations from these preliminary
results.

Observation 1. It is feasible for a moderate-size station to
satisfy the daily charging demands in most of the locations.
Observation 2. Energy imbalance still exists at some loca-
tions. The additional demands should be re-routed to the
neighboring stations.
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Fig. 2: Solar income vs. energy consumed for charging at dif-
ferent locations (a) sufficient energy at loc. #1 (b) insufficient
energy at loc. #2.
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Rooftop Charging. The new solar rooftop can harvest
150W according to a recent study from Hyundai [30]. Their
study reveals that the harvested energy can extend the
mileage by 3% at the speed of 48km/h (about 1.3 km
additional mileage) for the 2017 Hyundai IONIQ electric
car at 11.5kW - h/100km. This indicates that for two routes
with similar distance, choosing the one with more abundant
energy can extend the mileage. However, different from [16],
we argue that if the additional distance traveled to another
route is more than 3%, it is not worthwhile changing the
route even if the new one enjoys more solar irradiance.
This is because the energy harvested will be offset by
the additional distance traveled. Our analysis reveals that
the solar rooftops are useful especially when the AVs are
stationary during the working hours. The harvested energy
can extend the mileage by 10km, which covers most of the
short-distance commutes.

3.2 System Model

The system architecture is shown in Fig. 3. It takes historical
data of the spatial-temporal distribution of solar energy, us-
age distribution of AVs and (short-term) energy predictions

2. We consider the worst case scenario that all the AVs in the sub-area
are requesting to get charged.
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Fig. 3: System architecture.

into the frontend to determine the locations of charging
stations. A recurrent neural network [37] is utilized to fore-
cast the short-term energy income and charging requests.
The algorithm takes the prediction and optimizes decision
making. During operation, the system computes the follow-
ing: 1) the locations of the charging stations according to
the variation of usage patterns; 2) assignment of charging
requests to appropriate stations based on energy income
and expenditure; 3) route planning of AVs to optimize their
energy expenditure.

We assume the system involves two major entities: service
provider and users (passengers). The service provider offers
a ride hailing service similar to Uber and Lyft, with the
new innovation of self-driving and solar power. To make
a trip request, users enter the destination and the system
dispatches a dedicated ride. We assume the AVs have Inter-
net connections with the infrastructure to report their real-
time status such as location, battery energy, solar energy
income (via rooftop sensors) and the infrastructure provides
information of charging stations, route planning to optimize
the operation. The service provider has an initial budget
to allocate k charging stations in a confined region, e.g., a
start-up company with only a fixed amount of investment
who wants to optimize the operation of the system. For
simplicity, we assume the energy consumption of the AVs
is proportional to the mileage or traveling time, and do
not consider complex situations such as traffic congestions
in route planning. These factors can be always introduced
as additional weighted factors into the formulation at run-
time. Once the AV reports a charging request, or is about to
request one, the system collects such request into a pool for
charging assignment.

4 DEPLOYMENT OF CHARGING STATION

In this section, we first study the deployment of charging
stations. The goal is to ensure that the energy demand of
AVs can be satisfied at any time with moderate traveling
distance to the charging stations. We propose a mecha-
nism with an offline optimization of location selection, and
stochastic online adjustment for continuous adaptation to
new demand patterns. We summarize the important nota-
tions in Table 1.

4.1 Charging Station Placement (Offline)

The deployment of charging stations is formulated as the
Charging Station Placement problem (CSP). Similar to gas
stations that are built at the road intersections, convenient



TABLE 1: List of Important Notations

Notation | Definition

H Locations of charging stations

D; Center of the j-th cluster with energy re-
quests

m; Number of requests in the j-th cluster
Installation cost of one station

n; Number of charged AVs

Ty Charging requests ¢

x; Location of requests ¢

d(i, 7) Distance between location 4 and j
E; Energy demand of request ¢
S; Expected solar income at location ¢

locations of charging stations can also increase the operating
range significantly without worrying about battery deple-
tion. Nowadays, in order to promote emission-free vehi-
cles, charging stations have been built on university cam-
puses, public places like shopping malls [32]. However, few
literature has studied stations with extra solar-harvesting
capabilities to satisfy the rising energy demand in future
smart cities. Existing works have considered energy har-
vesting in wireless sensor networks through solar-powered
sensors [18] and hybrid energy source [19], whereas those
solutions cannot be readily applied here due to their limited
scale and the new application context like user demands,
vehicle mileage and route planning.

Specifically, the formulation of CSP should consider sev-
eral aspects: 1) the charging stations should be close to the
locations of energy requests, in order to reduce the distance
traveled to get charged; 2) for most of the energy requests,
the charging stations need to make sure at least one of
them is reachable to avoid battery depletion; 3) the charging
stations should be located in places with abundant solar
energy.

Charging Request. To facilitate our analysis, the city is
divided into grids {z;}. The system gathers historical data
of energy requests based on their locations and amount. We
define the sum of the charging requests r; within the grid
x; as a parameter associated with the grid location, with
its magnitude representing the amount of energy demand
in each grid. Neighboring grids can be combined into an
aggregated region R;, a location p; and the amount of
energy request m; are calculated as,

b= 2ier, Titi )
’ Dier, Ti ’

mj= Y (2)

1ER;

Eq. (1) calculates the average position of all the grids
weighted by the number of requests, i.e., represented by
the density of demands denoted by pj, i.e., the location p;
tends to be closer to grids with more energy requests. This
definition helps find an optimal placement of the charging
station. Eq. (2) calculates the sum of energy requests in a
region, denoted by m;, which determines the number of
charging stations near the region. p; and m; together form
a tuple C; = (p;, m;) of charging requests, and these tuples
for all the regions form a set of charging requests C = {C, }.
The CSP is defined as follows.

Charging Station Placement (CSP): Given the set of
charging requests C from historical data gathered offline,

find a location set S, |S| = k, so that locations in S have
sufficient solar energy, and max{p; € C,d(p;,q) : Vg € S, }
is minimized. The problem is defined as the following,

P1:min{ max {d(pi,q)}}, ®)

Subject to
S| =k )
E|GHI(s)] > B,Vs € S, (5)

where GHI is Global Horizontal Irradiance, and E[GHI(s)] >
B makes sure the harvested solar energy is larger than
a lower threshold of 3. CSP finds a group of locations
for charging stations, so that for any position in the set
of charging request S, there are always enough charging
stations near them to satisfy the energy demands and the
largest distance from any position to these charging stations
is minimized. Next, we prove the problem is NP-hard.
Theorem 1. CSP is NP-hard.

Proof. The problem can be reduced to the Facility Location
Problem (FLP). For given positions C, FLP seeks a location
set S, |S| = k so that max,,cc{minges{d(p;,q)}} is min-
imized. Considering the definitions of both CSP and FLP,
if m;, the number of charging stations needed, is set to 1
in CSP, and relax the restrictions of the location set S with
sufficient solar energy, then the CSP is reduced to FLP. Since
FLP is NP-hard [33], CSP is also NP-hard. O

4.2 (2 + ¢)-factor Offline Algorithm

Since CSP is NP-hard, no algorithm can achieve optimality
in polynomial time unless P = N P. To this end, we pursue
the direction of approximation algorithm. The intuition is
to make sure the collection of charging stations covers as
many energy requests as possible with minimum traveling
distance. The algorithm is described below (Algorithm 1).

1)  Preparation. We select a number of m; locations with
the largest expected solar energy from the neigh-
borhood of each location p; € C. This new set of
candidate locations of charging stations is denoted
by A.

2)  Selection. We first pick an arbitrary location in A to
deploy the first charging station, denoted by H;.
Then we assign all the remaining locations to the
cluster of By associated with H;. Next, we find the
location in B; furthest from H;, and designate it as
the second charging station Hy. For each location u
in the original By, if d(u, He) < d(u, H;), then u is
re-assigned to Bs associated with H; otherwise, u
stays in its original cluster B;.

3) Adjustment. For j clusters {Bq,Bs,...,B;} asso-
ciated with charging stations {H.,Hs,...,H,},
choose a location u from the charging stations which
is the furthest from its assigned charging station,
and locate the (j + 1)-th charging station H;, at
location u. For any station u in the original clusters,
if d(u, Hj41) < d(u, Hy), where H, is u’s charging
station assigned originally, then u is re-assigned to
the charging station H1; otherwise, u stays in with
B,. This procedure is continued until a total of %
charging stations have been established.



Algorithm 1: (2 + €)-Charging Station Placement
Algorithm (Offline)

1 Input: Set of charging requests C = {C; : C; = (p;, m;)},
distribution of solar energy, neighborhood radius r, set of
candidates locations A <+ ¢, # of stations to establish k.

2 Output: locations of charging stations #.

3 fori=1,2,...,|C| do

4 | A< AU{m; largest solar-rich locations in r range of p; }

Pick any point v € A; Hy + v, By + A\ {v};j =1
while j <k —1do
Hji 1+ argmax
V1<i<j,VueB;
8 Vi<i<j VuéeB;
9 if d(u, Hj+1) < d(u, H;) then
10 | Bj+1 < Bjp1U{u}, Bi < Bi\{u},j < j+1

11 j+—Jj+1

NI

d(u, Hz)/ Bj+1 — q5

The time complexity is analyzed below. For the first step
of finding candidate locations, the time requirement for m
candidate locations is O(m). For determining cluster head,
each one has complexity of O(m) and there are k in total.
Therefore, the total complexity for our algorithm is O(km).
Theorem 2 (Approximation Bound). Algorithm 1 has (2+¢)
approximation ratio to the optimal solution.

Proof. Denote the maximal distance of this solution as SOL.
We first prove that, for this case, the solution found by the
algorithm is no greater than 2h, where h is defined as the
largest distance from any node wu, to its assigned cluster head
H; among all k clusters. SOL is the distance between two
nodes, e.g., A and B in a cluster, SOL = d(A, B). For the
cluster head H; associated with A and B, d(H;, A) < h and
d(H;, B) < h. Therefore, according to the triangle inequality,
d(A,B) < d(H;,A) + d(H;,B), and SOL < 2h.

Next, we prove that any two nodes in
{H1,Hs,...,Hy,u} have distance greater than or equal
to h, ie, u is not assigned to another cluster head yet.
It implies that d(u, H;) > h. Since u is not picked while
looking for Hs, d(u, Hy) < d(Hy, Hs). Since h < d(u, Hy),
h < d(Hy,Hs). By applying similar procedure in the
process of determining Hs, it is proved that h < d(H;, H3)
and h < d(Ha, H3). By continuing this process for all k
cluster heads, we conclude that the distance between any
two heads in {Hy, Ho, Hs, ..., Hy} is at least h.

Suppose the optimal solution has the largest distance
denoted by OPT. Since {Hj,...,H,u} exists, according
to the pigeonhole principle, there is at least one cluster in the
optimal solution containing two or more nodes in the above
set. Since it has been proved that the distance between any
two nodes in the set is at least h, OPT > h. With SOL < 2h,
SOL <2-OPT.

For candidate locations in the neighborhood within
range of r > 0, the distance between any two locations A
and B is no greater than d(A, B) + 2r. The new solution
SOL* is no greater than SOL + 2r, SOL* < 2(OPT + ).
Since r is much smaller than the OPT, the approximation
bound is SOL* < (2+€)OPT. O

Example. An example of CSP is demonstrated in Fig. 4
when k = 3. (2, 5) stands for a charging request located at
x; with a number of 5 times. (p;, 100) is the 100 aggregated
charging requests in a region, represented by the center p; as

7% Station One
| * Station Two
| Y  station Three
Region of Station
| Candidates
Unchosen
Candidates

| o

| Requests Served

| by the Same Color

Stations

| ®, Regions Containing

| All of the Requests
Served by the Same

| Color Stations

Fig. 4: Example of solving CSP when k = 3.

a weighted average of energy requests. As shown by Fig. 4, 3
charging stations are picked in the order of the arrows from
some candidate locations with sufficient solar energy. Then
the requests are assigned to their closest charging stations.

4.3 Update Charging Stations (Online)

Near-optimal solutions can be achieved offline if the succes-
sive occurrences of charging requests are known. A method
is to use machine learning for prediction. Then Alg. 1 is
applied to derive the initial deployment of the charging
stations that can “best” accommodate the future energy
income and demands.

Nevertheless, the future occurrence could exhibit sig-
nificant deviation from the historical data. For example,
the spatial-temporal variation of energy is subject to the
seasonal change of sun’s angle towards earth surface. The
building obstructions and natural surroundings may have
different impact on the energy captured based on the actual
locations and the time of the year. Similarly, the patterns
of utilization may undergo substantial variation because
of traffic, construction and planning. As a result, to adapt
the varying nature of these factors, new charging stations
should be added while the ones with low utilization should
be removed or relocated. Based on the offline solutions on
the historical data, we propose a stochastic online algorithm
to adapt to these changes.

Adding. Whenever a charging request r; is received, its
position z; is recorded. There are two criteria of determining
whether a new charging station should be established at
location z; or not: 1) There is no charging station within
distance d from z;, where d = E[h — }'|], Vh,h' € H
(the average distance between any two stations). 2) With
probability 1/f (or equal to one if f < 1), the location
x; is chosen as the new location, where f is the cost of
establishing one charging station. When these two criteria
are satisfied, a new charging station is introduced at location
ZTi.

Pruning. A station contains multiple charging piles and
each one maintains a counter of n; for the number of AVs
served per day. The expected number of vehicles served is e,
and the cost of removing one charging pile is f (originated
from removing the previous installation). We mandate a
charging pile to be removed stochastically with probability
max(0,1/f—n;/ef). If there is no AV served at the charging
pile during that day, it is removed with probability 1/f; if



Algorithm 2: Station Adjustment Algorithm (On-
line)

1 Input: Set of charging requests R, set of charging stations H,
the installation cost f of one station, number of served
requests n; at i-th station during a day, expected number of
served requests e.

2 Output: New set of charging stations #.

3 forVr; € R do

if d(ry, h) > E[|lh — h'||], Vh,h' € H then

z < random number in [0, 1]
if 2 < 1/f then
| H o HU{=i}

I e

s for H; € H do

z +— random number in [0, 1]

10 if z < max(0,1/f — n;/ef) then
1 | H<«< H\{H;}

n; > e (i.e. the served requests are more than expectation),
then the removal probability is 0; if 0 < n; < e, the
probability is between 0 to 1/f. The online algorithm is
summarized in Algorithm 2.

5 ASSIGNMENT OF CHARGING REQUESTS

After the charging stations have been established, the run-
time performance of the system necessitates coordination
between the charging infrastructure and the AVs; otherwise,
the AVs would simply swarm into the closest stations
that ultimately causes energy depletion at some popular
locations. To tackle this problem, we design an assignment
algorithm to re-route some of the requests and achieve
the following objectives: 1) the traveling cost of AVs to
the assigned charging stations is minimized; 2) no station
depletes its energy storage.

For optimal scheduling, the system does not make on-
line decisions that take streaming requests for immediate
response. Instead, it plans ahead to forecast the number of n
charging requests that would be sent from the AVs depend-
ing on their energy status. For example, if the destination
is still far but the battery is running low, the system could
provide an estimate of when the charging request would be
sent and form a number of pending requests. This way, the
charging assignment can be conducted more effectively for
a better solution. Thus, we consider an offline setting of the
assignment problem.

Charging Assignment Problem (CAP): The goal is to
assign n charging requests (of energy demands F;) to m
stations. Compared with traditional AVs charged by the
stationed connected to the power grid, the solar-powered
AVs are constrainted by the output of harvested solar en-
ergy. Therefore, the energy constraint must be considered
in the formulation of the Charging Assignment Problem
here. With the predicted energy income s; (from which
the charging consumptions have been subtracted), assigning
which request to which station is governed by the following
aspects. First, from the perspective of the passengers who
receive the charging service, the extra mileage traveled from
x; to the designated station h; is a dominant factor of user
satisfaction. It is proportional to the distance measure of
L —d(i,7), in which d(4, j) is the traveling distance between

location ¢ and j, and L is a large number to make L — d(i, j)
positive. In other words, a larger d(i,j) results a lower
satisfaction and vice versa. The objective is to maximize
user satisfaction of all n requests. Meanwhile, we should
guarantee that the total energy requests assigned to a station
do not exceed the expected energy income. The problem is
formalized below.

max Z Z dijyi]‘ (6)

j=1i=1

P2

Subject to .
> Eiyij < sj, @)
i=1

m

Zyij =1, 8)
j=1

where d;; = L — d(i, j) is the user satisfaction, y;; is a 0-1
decision variable of whether a request is assigned to station
y;. Eq. (6) maximizes user satisfaction in terms of distance.
Eq. (7) ensures the energy demand assigned to each station
is bounded by the harvested energy. Eq. (8) states that each
charging request is assigned to one station.

5.1 Solution by Dynamic Programming

CAP can be solved in polynomial time by converting it to
the Knapsack problem [31], which finds the most valuable
items to fit into a fixed-size knapsack. Here, the problem
has a difference since the user satisfaction for each request
would change during assignment. If a request has not been
assigned to any station yet, the satisfaction is d;; for being
assigned to station j; if the request has been assigned to
another station [, the satisfaction becomes d;; — d;;. Note
that the former assignment of some requests may be altered
by the process of another station. Since the satisfaction is
updated to d;; — d;;, the request is less likely to be assigned
to j, and if this happens, it means the new assignment can
always increase the total satisfaction.

We leverage dynamic programming to solve the prob-
lem, which efficiently trades computational time with mem-
ory space. The key step is to comp up with the transition
from step 7 to ¢ + 1 assuming we know the optimal solu-
tion at step i. The optimal assignment with the maximum
satisfaction for the first ¢ charging requests with s harvested
energy is denoted by F'(3,s). F(0,s) =0 (0 < s < s;) is set
as the initial value. F'(4, s) is updated of 7 and s towards the
number of requests n and maximum harvestable energy .S,

F(is), Ein>s

Flitls)= { max(F(4s), F(is—Ei)+dia 1), Bip < s.

The dynamic programming method runs in O(s;n) time
with O(s;n) space that finds the optimal solution of each
assignment. During the process, O(m) is needed for updat-
ing the assignment for each station, with a total of m times.
Therefore, the time complexity is O(snm)+O(m?). Since the
Knapsack solution provides an (a + 1)-approximation [23]
to the assignment problem, with dynamic programming
(o« = 1), the approximation ratio is 2 compared to optimal
assignments.



6 ENERGY-AWARE ROUTING OF AV

With the additional capabilities to harvest solar power, we
also integrate energy-aware route planning for AVs into
the optimization framework. Recall that the AVs have two
ways to replenish their battery energy either through the
charging station or from the solar rooftop. The previous
charging station placement and request assignment guar-
antee the regular energy replenishment is satisfied. In this
section, with additional capabilities to harvest solar energy
anywhere from the rooftop, we consider energy-aware route
planning for AVs.

Energy-aware Route Planning. The AVs can select a path
with more solar exposure if the candidate paths are identical
in traveling time (energy consumption). Hence, route plan-
ning should consider factors of: 1) energy harvested and
consumed from a chosen path, 2) residual energy of the AV.
Here, we consider the general case that energy consumption
is proportional to the traveling time. The AV travels from
the source to destination in a grid-based coordinate system
following different paths. Our objective is to maximize the
residual energy of the AV by selecting a path P, while
making sure the residual energy is above a lower threshold.

The problem is analogous to the Traveling Salesman
Problem with Profits, a variant of the classic Traveling
Salesman Problem (TSP). TSP aims to find the shortest path
traversing a set of locations exactly once [24]. In addition to
the traveling cost, a reward p; is associated with each vertex.
The problem finds the shortest path with the maximum
profits. These two objectives are indeed conflicting, since
the first objective urges the salesman to travel as less as
possible while the second one encourages him to traverse as
many vertices as possible to maximize the profits collected.
In close analogy, the profits here are the solar energy enroute
to be harvested and the objective is to minimize the energy
consumed (assuming it is proportional to traveling distance)
while maximizing the solar energy collected. The problem is
formulated in the following,

P3: min Z d(i, j)as; — Zpiyi )
i,jEV i€V
Subject to

Z A5 = Yi, (10)

JjeV\{i}
Z aij = Yy, (11)

ieV\{s}
P> d(i,j)ai; < Eav, (12)

1,jEV

yl = 17 (13)
Qjj S {0, 1}, (14)
y; €{0,1}, (15)

where 4, j represents the index of locations from a vertex
set V, a;; is an indicator denoting whether the arc between
i and j is chosen or not (1 for chosen, 0 for not), y; is the
indicator denoting whether location i is chosen or not, P
is the average power consumed for unit distance. Eq.(10)
and Eq.(11) are the assignment constraint, Eq.(12) ensures
the chosen path does not deplete the residual energy of AV,
Eq.(13) ensures the chosen of starting location, and Eq.(14)
and Eq.(15) represent the indicators.

Greedy Algorithm. We propose a greedy algorithm.
Consider the map with grids {z;;} and the mileage mea-
sured in Manhattan distance. According to the forecast, each
grid z;; has a potential solar energy income sf; during time
period t. At x;;, the AV can move to four adjacent grids
{&i—1,j, Tit1,4, Tij—1, Tij4+1} in the next step, that either
increases or decreases the distance by one unit towards the
destination. Based on the solar energy at these locations,
profits can be calculated. Take x;_; ; for example, assume
that moving to this location would decrease the distance to
the destination by 1, then the profitis p; 1 ; = s{_; ; —1.In
each step, the AV moves to the grid with the largest profit
if the energy constraint is not violated. Before taking this
move, the AV also makes sure that there is at least one
charging station within the operating range of the AV before
energy depletion. If a location has the largest profit but fails
to satisfy the previous condition, it is not chosen. The above
process is repeated until the AV reaches the destination.

Time Complexity. At each step, it takes constant time to
find the next destination with the largest profit without vi-
olating the energy constraint. While the maximum number
of steps is in the order of the number n of grids, the time
complexity of the proposed greedy algorithm is O{n}.

7 SCHEDULING OF SHARED AUTONOMOUS ELEC-
TRIC VEHICLES

We have constructed a vehicular network of autonomous
vehicles that can be operated solely based on solar energy
in previous sections. Such a framework makes the system
consisting of shared AVs that can serve the citizens being
possible. This section will discuss this promising application
of the proposed framework and provide efficient algorithms
with theoretically guaranteed performance. Note that this
section focuses on the task assignment problem of shared
AVs. As for when, where, and how the shared AVs may
replenish their energy needs to be addressed using the
proposed methods in Sec.5, Sec.6, and Sec.7 to form a holistic
system.

7.1 Scheduling Trips for One AV

Benefiting from autonomous driving, the operation and
scheduling of taxis in future smart cities must also be highly
intelligent. By getting rid of taxi drivers, the autonomous
electric taxis can operate 24 hours a day and seven days a
week if possible, significantly improving the usage and effi-
ciency of an electric vehicle. Using such a system depending
on AVs, users just need to post their position, beginning time
b;, and finishing time f;, and then a taxi will be assigned by
the system to pick them up and finish the trip. In this way,
taxis in the future will be more like shared vehicles among
people, which motivates us to call such scenarios the Shared
AVs.

From the perspective of the taxi, it aims to maximize
the number of trips it fulfills to consider the profits and
social efficiency jointly. Note that the shared AVs are treated
like public facilities, which naturally motivates us to use the
number of trips served as the optimization goals instead of
other matrices such as the total money earned in a certain
period. However, besides the ability of perpetual operation,



another significant difference between the shared AVs and
the ordinary taxis is the time spent for charging: the ordinary
cars using fuels can refill their tank immediately, while
the time spent for charging the shared AVs should not be
neglectable due to the limitation of the charging speed.
Therefore, when the system intends to schedule the routing
of AVs, it should also spare some time to charge the AVs
to avoid the depletion of energy. The taxi is restricted to
serving the requests in a region to avoid traveling too far to
catch the following passengers. Due to this restriction, the
average time spent to travel to the following passengers can
be derived according to the analysis of the collected data
or a prior survey, which is added to the starting time of
each trip. Therefore, the reported starting time of each trip
is earlier than the actual starting time, which allows efficient
time for the AV to pick up the passenger. The reported
finishing time is reasonable and precise by analyzing the
usual time spent on the trip in corresponding traffic volume.
A more precise solution can be derived based on the exact
locations of the origin and destination of each trip and the
exact time requirement. However, considering these makes
the problem intractable. The Maximizing Utility of Shared
Autonomous Vehicle (MUSAV) problem is formulated as
following,

P4: max|U| (16)
Subject tozz- =0or1,Vi, 17)
ten Pen+ Eav =Y (fi—bi) - Pir + Ees,  (18)
=
ten+ > (fi—bi) +les <T. (19)
=
U = {ilz = 1,Vi}, 1)

For a given period T, MUSAV aims to maximize the
number of trips that one AV fulfills by choosing the trips
it accepts carefully. z; is the indicator showing whether the
trip 7 is chosen or not. ¢, is the time spent for charging,
P.;, and Py, are the average charging power and average
power spent for traveling, E4y is the current energy of
AV, and E.; and t.s are the energy and time spent to
reach the charging station. Eq. (18) ensures the energy that
AV receives is larger than the energy spent, while Eq. (19)
ensures that there is enough time left for charging the AV.
Eq. (20) is the natural requirement that the beginning time
of a trip plus the average waiting time w is no later than its
finishing. U is the set of trips accepted by the AV, and Eq.
(22) ensures any two trips accepted by the AV do not have
any overlapping since the AV is not allowed to serve two
requests simultaneously.

According to P4, the AV can choose any set of trips that
do not coincide with each other if only the constraints about
the energy are satisfied. Since ., appears both in Eq. (18)
and Eq. (19), combining these two constraints, the condition
which needs to be satisfied to guarantee the energy being
consistently enough for AV is as following,

Z(f'*b‘)<T.PCh+EAV_ECS
' e Pt'r""F)ch

(23)

icU

Algorithm 3: Earliest Starting Time Algorithm

1 Input: n pending trips Z = {z;} in a certain period
T, zi = (bi, fi).
2 Output: The set of chosen trips I/ for one AV.
sU+— ¢
+ while 3y, (f; = b)) < FlaptBar=Le do
5 if Z # ¢ then
6 zp, < argmin{b; }, U « U J{h}
ZiGZA
Z+— Z\{zj:zj Nz # @, Vj}

7

8 AV fulfills the trips according to the time sequence
of U

Since the right-hand side only contains constants, the sum
of the duration of trips only needs to be smaller than a
constant.

7.2 Earliest Starting Time Algorithm

The MUSAV problem is apparently NP-hard. First, a heuris-
tic greedy algorithm named Earliest Starting Time Algo-
rithm is proposed. This algorithm will find the trip with the
earliest starting time in the set of pending trips and check
whether adding this new trip will still satisfy the constraint
Eq. (23) or not. If the equation is not satisfied anymore, then
the algorithm ends, and the AV will serve the current set of
chosen trips; If the equation is still satisfied, it will remove
all the pending trips that have any overlapping with the
chosen trip from the set, since one AV can only execute one
trip at the same time. The whole processes are conducted
iteratively until the algorithm ends, or there are no more
pending trips in the set. This algorithm is summarized in
Algorithm 3.

However, this algorithm does not have any performance
guarantee, i.e., the achieved utility by the algorithm is un-
bounded compared with the optimal solution. One example
is constructed to show such a case. The time starts at 0. The
starting and finishing time of the set of trips are as following,

T'Pch+EAV_Ecs

by =0,f = h ;

! fl Pt’r'+Pch

b= (i=1) -8+ (i— 1), f; = (i—1)- (6 + ),

2<i< {T;PC’ﬁEAV*EjS+1J,5z0.
(Ptr+Pch)(6+w)

The AV will choose the first trip (b1, f1) using the proposed
greedy algorithm. Since this trip is the longest trip that can
be accepted, no more trips can be added, which achieves the
utility of 1. However, if the AV first serves (bs, f2), which
starts a very short time ¢ after b;, then the utility can be as
much as | (TP, +Eay —Ees)/(Pr+Pep,)-(6+w)+1]. Since
T is the only changing variable in the utility achieved by the
second method, the ratio of the utility achieved by the non-
greedy and greedy method is unbounded as T" approaches
to oo. Therefore, the proposed greedy algorithm does not
have any performance bound.

Time complexity. If the total number of trips in the set is
n at the very beginning, finding the trip with the earliest
starting time takes O(n) time, and removing the trips that




Algorithm 4: Shortest Trip Algorithm

1 Input: n pending trips Z = {#;} in a certain period
T, zi = (bi, fi).
2 Output: The set of chosen trips I/ for one AV.
3U— ¢
+ while 35y, (fi — bi) < FFHEav=Ees do
5 if Z # ¢ then
6 zp <= argmin | f; — by|, U < U U{h}
ZiGZA
Z < Z\{z: z;Nzn # ¢, Vj}

7

8 AV fulfills the trips according to the time sequence
of U

overlap with the chosen trip takes O(n) time. The number
of iterations is in the order of O(T'), so the total time
complexity is in the order of O(Tn)

7.3 Approximation Algorithm

The previous greedy algorithm does not have any guaran-
teed performance bound, making it difficult for the system
to picture the optimal solution based on the results derived
by the greedy algorithm. The given counter example shows
that the algorithm can not compete with the optimal solu-
tion since the duration of the trip is not considered such
that the longest trip is picked at the beginning. Therefore,
to have theoretically guaranteed performance bound in any
scenario, an approximation algorithm is proposed.

The approximation algorithm first picks the shortest trip
from the current set of pending trips and check whether
condition Eq. (23) is satisfied or not. If the condition is no
longer satisfied, then the algorithm terminates and outputs
the chosen trip set; otherwise, all the trips overlapping with
the chosen shortest trip are removed from the set of pending
trips. These whole processes are repeated iteratively until
the condition Eq. (23) is not satisfied, or the set of pending
trips have been depleted. The algorithm is named Shortest
Trip Algorithm (STA) and summarized in Algorithm 4.
The approximation ratio of the algorithm is proved in the
following.

Theorem 2. The Shortest Trip Algorithm has an approx-
imation ratio of three compared with the optimal.

Proof. The sets of trips derived by STA algorithm and the
optimal solution are U and U*. We can first build a map
from U* to U following the rules: 1) If the trip is in both sets,
then the trip will be mapped to itself; 2) If the trip I is in U/*
but not in U, but I overlaps with a trip in U, then I will be
mapped to the shortest overlapped trip in ¢/; 3) If the trip is
in U* but not in U/, and I does not overlap with any trip in
U, then I will be mapped to the longest trip L in U*. These
are all the three possible cases of trips in U*

Through these mapping functions, any trip in U™ is
mapped to a trip in U/. From the perspective of the trips
in U, there are only two cases: 1) the trip J in U that is not
the longest trip 2) the longest trip L in U. For case 1, there
are at most two trips in &/* can intersect with J, otherwise
the third one in U* intersecting with J must be contained by
J, which contradicts the rule that J is the shortest interval

chosen from the set of pending trips since we can always
switch it with the shorter trip without any cost. For case 2,
there are at most || trips in &* that can be mapped to L.
These trips all have a longer duration than L since L is the
last chosen shortest trip. If there are |U/| + 1 such trips, we
can always find one more trip adding to ¢/ without violating
the time constraint, which is a contradiction to the truth that
the algorithm terminates at generating {/. Therefore, we can
conclude that |U/*| < 3|U]. O

Time complexity. The finding of the shortest interval takes
time of O(n), and removing the overlapping trips also
takes O(n). There are at most O(T) iterations due to the
lower bound of each trip. Therefore the time complexity
is in order of O(T'n). The approximation algorithm takes
the same complexity as the earliest starting time algorithm,
but guarantees that the achieved utility by one AV always
choosing the shortest trip is at 1/3 of the optimal solution.

7.4 Scheduling Trips for Multiple AVs

We have discussed the scheduling of one AV to maximize
its utility. However, the shared AVs are public assets whose
total utilities are more reasonable metrics to maximize. In
a more realistic setting, multiple shared AVs operate in a
region to serve the people there. Maximizing the sum of
utility of all AVs brings maximum social benefits. Based
on this new objective, the Maximizing Utility of k Shared
Autonomous Vehicles (k-MUSAV) problem is formulated in
the following,

. I
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P5 is similar to P4 except that each AV [ should satisfy its
own time constraint,
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P5 aims to maximize the sum of the utility of all £ AVs.

In order to address the k-MUSAV problem with guaran-
teed performance bound, a new algorithm named & Vehicles
Shortest Trip Algorithm (k-VSTA) is proposed based on the
previously proposed STA algorithm. For the AVs number-
ing from 1 to k, the system starts from the first vehicle,
choosing the shortest interval from the set of pending trips,
especially for the first vehicle. Then it checks whether the
time constraint Eq. (31) is satisfied or not. It will only
assign the chosen trip to the first vehicle if the condition is
satisfied. It removes the chosen trip from the sets of pending
trips for the remaining k£ — 1 vehicles and the overlapping
trips from the set of the first vehicle. It will continue this
process sequentially until the k-th vehicle form one iteration.



Algorithm 5: k£ Vehicles Shortest Trip Algorithm

1 Input: Number of AVs k, n pending trips Z = {z;}
in a certain period T, z; = (b;, fi).

2 Output: The set of chosen trips U/ for one AV.

sU+— ¢

T-Pen+EY y —Ees
4 while 3is.t. 3, u(fl b)) < ﬁdo
5 if 31 s.t Z # ¢ then
6 for/=1,2,3,...,kdo
7 2 arg min IfE =0, Ut U U{h}
zlezl
; 2 2\ (505 £ 0.9i)
9 Z-le Z70\ 2
1
10 if >0 (fl—b) > W then
1 [-th vehicle will be not be eligible for
choosing trips anymore.

12 k AVs fulfill the trips according to the time sequence
of U' respectively.

The processes will be executed iteratively until either the
time constraint is not satisfied for any AV or the set of all
pending trips is depleted. This algorithm is summarized in
Algorithm 5, and it can be proved that this algorithm also
has an approximation ratio compared with the optimal.
Theorem 3. The k Vehicles Shortest Trip Algorithm has
an approximation ratio of 2k +1 compared with the optimal.

Proof. U* and U are the unions of the chosen sets of all
k AVs for the optimal and the k-VSTA algorithm, i.e.
U = y{u™}, U = U {U'}y. A mapping from U* to U is
built similarly as the proof of Theorem 2. Note that the trips
served by one AV cannot overlap. However, any two trips
served by two different AVs can overlap. The longest trip L
is the longest one among all U"’s.

For any trip J € U, there are still two cases: 1) either J is
not the longest trip in U/; 2) or the longest trip L in U. For the
first case, J served by i-th vehicle cannot intersect with more
than two trips served by i-th vehicle in the optimal solution;
otherwise, J can always be replaced by that shorter interval
with no cost. J can contain some trips served by other k — 1
vehicles; however, i-th vehicle does not choose them since
they have already been chosen by other vehicles. According
to the mapping function, these contained trips are mapped
to the same trips in U/ directly. Therefore, for each trip in U
satisfying case 1, at most 2k trips in i/* are mapped to them.
For the second case, it can be easily proved that the number
of trips mapped to L is no greater than |/{|. Summing them
together, it is proved that |U*| < (2k + 1)|U] O

When k£ = 1, the bound is 3, which coincides with
Theorem 2. The time complexity can be analyzed similarly,
which is O(kTn).

Discussion. The MUSAV and the generalized k-MUSAV
problems are first proposed in this paper. Hence the k-VSTA
algorithms are proposed here to ensure a guaranteed perfor-
mance bound of the found solution. Otherwise, the solutions
could be arbitrarily worse in some scenarios. However, be-

ing the first approximation algorithms, the solutions found
by k-VSTA are also competitive to the optimal solution.
Denote the optimal solution found for k£ vehicle system
as U hence the average utility for each vehicle equals
to T According to Theorem 3, the solution found by k-
MUSAV is no worse than 5 k +1 ,

is no worse than m Similarly, the average utility for
k + 1 vehicle system achieved by the opt1mal solution and

k-VSTA algorithm are L,{C’j i and 7y hray - Taking the ratio
between the average utility of £ + 1 and & vehicle system,
it is found that ratios for the 0pt1ma1 solution and the k-

Upirk Uik okl
VSTA solution are ug(k+1) W (h D) * 2h43°
uk+1

TR the utility of k-VSTA only times an

extra factor of 321;, which is very close to 1 for very large
k. Therefore, the proposed k-VSTA algorithm can maintain
similar increase of utility as the optimal solution as the

system size scales up (i.e. k increases).

inducting the average utility

and

Despite of

the same factor

8 PERFORMANCE EVALUATIONS

The goal of performance evaluations is to integrate existing
datasets to validate the designs of algorithms. In particular,
we first evaluate the prediction of the machine learning
algorithm on time series data. Based on these predictions,
we evaluate the deployment strategies of charging stations,
assignment algorithms and operating range of the AVs
and compare them with competitive algorithms from the
previous literatures or existing approaches. As a significant
application of AVs, the proposed mechanisms for shared
AVs are also simulated afterwards.

8.1 Simulation Setup

We acquire solar irradiance data from SolarAnywhere [35],
which provides data for the continental U.S. with a resolu-
tion of 10 km. A field of 200km x 200km in the metropolitan
area of El Paso, TX is chosen in our simulation. 5 years (2009-
2014) hourly solar irradiance data are extracted from the
dataset and used in our prediction models, among which
the first 3 years are used as the training data and the next
2 years are used as testing. As a proof of concept, we do
not consider the complex traffic/road conditions, but set the
source and destinations of the AVs in a 2D plane measured
in Manhattan distance. The system schedules all the AVs to
move at a constant speed of 60km/h to avoid congestions
and the fully-charged battery can support a total mileage
of 200km (as we set 10-30% lower than normal mileage of
electrical vehicles to account for the intensive computations
on-board).

Each station has a number of charging piles that can
host a total 10 vehicles at the same time if the residual
energy is enough for the station. The charging process takes
60 minutes from empty to full. Due to the resolution of
the data source, we divide the field into grids of equal
length (1km). Similar to Section 3, we analyze the traffic
data from [28] to obtain the volume at different locations.
The patterns exhibit a drastic spatial-temporal difference,
based on which, we apply a conversion ratio (set to 10%) of
the number of AVs in that traffic volume. This ratio can be
adjusted according to the number of possessions of AVs. We



average the simulation results over 100 runs. The prediction
engine is developed with Tensorflow and tested on Nvidia
Tesla P100 GPU in HPC and the backend algorithms are
developed in Python and MATLAB.

8.2 Comparison of Prediction Schemes

The accuracy of energy prediction determines the perfor-
mance of the backend algorithms. To this end, we first
evaluate different machine learning algorithms. Solar energy
and demand represent a perfect example of time series study
at each geographical locations. The objective is: given the
solar energy income or the number of the charging requests
for the previous one or few hours, predict these values
for the next time periods. We apply the Long Short Term
Memory (LSTM) network [37] to forecast the future values.
LSTM is the state-of-the-art recurrent neural network that
surpasses traditional structures. Each LSTM cell consists of
a set of gates to remember and forget relevant information
towards minimizing the loss objective. In our evaluation, a
total of 64 LSTM cells are stacked as the hidden layer and the
depth of the network is extended by adding the number of
layers. The hourly solar income data and charging requests
data in one week are fed into the prediction engine for
training. The hourly data in the next two consecutive days
are used for testing, which compares the predicted hourly
data with the actual values.

Fig. 5 shows the results of predictions for solar energy
and charging requests. For two very different solar income
distribution (sunny and cloudy), LSTM can predict with a
high accuracy. The highest solar income mainly comes from
10 a.m. to 18 p.m.. For the charging requests, they mainly
concentrate on the working hours and reduce rapidly. There
are strong demands of charging from 7 a.m to 10 a.m. and
17 p.m to 20 p.m., however the solar income encounters a
deficit due to sunset. This situation has been captured by the
proposed framework as discussed in the next subsections.

To show different methods of prediction, statistical meth-
ods of Moving Average (MA), and Auto-Regressive Inte-
grated Moving Average (ARIMA) [38] are compared with
LSTM. Root Mean Square Error (RMSE) is applied here as
the metric to measure the distance between predicted and
actual values,

RMSE((z") =

E[(z* — 2)2} (32)

z* is the predicted value. z is the actual value and E[(z* —
z)?] is the expectation of the square error. An LSTM with
2 hidden layers is evaluated with different backward time
steps (back). MA is evaluated with different window sizes
(wz), and ARIMA of 0 degree of differencing is evaluated
with different lag order (p). LSTM with 3 backward hours
has the overall minimum RMSE of 27.5 compared with
the other two schemes, which improves 29.1 % and 26.9
% compared with the best prediction performance of MA
(wz=1) and ARIMA (p=6).

8.3 Comparison of Charging Station Deployment

Next, we compare the proposed offline and stochastic online
charging station placement algorithms with the optimal
result. To provide more insights, we also benchmark our
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TABLE 2: Comparison of average SE of different pre-

diction algorithms for solar income and charging requests
(back - # backward time steps in hrs, wz - time window, p -
lag order, d - degree of differencing.)

LSTM back=24 back=12 back=6 back=3 back=1
2-layer 45.7 41.5 35.8 27.5" 32.1
MA wz=1 wz=2 wz=3 wz=4 wz=5
38.8 43.2 46.5 51.0 55.8
ARIMA p=2 p=4 p=6 p=8 p=10
d=0 50.3 45.2 37.6 425 47.3

algorithm with the classic online k-means clustering algo-
rithm [36], in the similar application context. As a demon-
stration, we plot the energy distributions and the results in
an 25 x 25km? area, with the charging requests depending
the fractional volume of the traffic at that time. A total
number of 150 synthetic charging requests per hour are
distributed in the chosen field, whose distribution coincides
with the distribution of the traffic volume by analyzing the
data from [28]. The brighter color indicates higher solar
energy depending on the terrains and surroundings. Dif-
ferent integer number k’s (k € [1,20]) of charging stations
are plugged into different schemes, and the minimum &
value satisfying the energy constraint Eq.(5) is used in the
optimization. Larger allowed £ values may decrease the
derived min-max distance, which also involves more infras-
tructure cost of deploying more stations. However, in order
to compare the performance of different schemes if adequate
budget of station deployment is allowed, the experiment is
also conducted for more station numbers with min(k) + 2
and min(k)+4, where min(k) denotes the minimum & value
satisfying the energy constraint.

Fig. 6 (a) shows the placement of charging stations based
on historical solar distributions. The triangles and dots
represent the charging stations and requests respectively,
where the same color means that they are served at the
same station. Instead of being simply placed at the energy-
richest places, the stations tend to be more scattered to
accommodate the charging requests from different locations
while ensuring there are sufficient harvestable energy.

Once there is a pattern change in the distributions of
traffic volume or energy distribution, the stochastic online
algorithm can capture such shift and continuously update
the deployments as demonstrated in Fig. 6 (b). 4 new
charging stations are added to the current group to satisfy
the emerging new requests around these areas because of
the increase of demand. As a validation of our algorithm
designs, these new locations all enjoy sufficient solar energy,
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thus can successfully handle the additional demands.

Finally, we compare the performance of different mecha-
nisms of charging station deployment based on the metrics
of power generation, min-max traveling distance of the AVs,
number of charging stations established and number of requests
fulfilled during the day. The optimal solution is derived
if both ambient energy profiles and charging requests are
known in advance. We also compare our algorithm with a
competitive online k-means clustering algorithm [36], which
finds clusters of comparable spatial extent in an online
setting.

From Table 3, we can see that the online algorithm
achieves the best performance as well as outperforms the of-
fline algorithm in all four criteria. This is because the offline
algorithm simply calculates the “optimal” solution based on
historical data, which may be outdated. The online algo-
rithm can capture such changes given that it generates the
minimum number of stations (by pruning the low-utilized
ones) while achieving the min-max traveling distance for
requests served at the same station. It also generates the
maximum solar energy output for higher energy storage
and mitigate the impact from ambient dynamics. Compared
with online k-means, the online algorithm generates 63%
more electricity, reduces the min-max distance by 30%, saves
the number of established stations by 37%, and increases the
number of completed charging requests by 74%. Our online
algorithm are also close to the optimal results by 10-15%
off the optimal solution. For different k values, the pro-
posed online algorithm all achieves the best performance,
and similar proportions of generated electricity, number
of charging stations, and number of completed requests
are achieved for the case of min(k) + 2 and min(k) + 4.
Especially, the reduction of min-max distance increases to
40% compared with the benchmark in the case of min(k)+4,
since more stations allow better coverage of the field and
reduce the traveling distance of vehicles significantly via the
optimization.

8.4 Comparison of Charging Assignment Strategies

The proposed Charging Assignment Algorithm (denoted by
CAA) jointly considers the energy status of charging stations
and the distributions of charging requests. An intuitive
strategy is to find the Nearest Neighboring (NN) station and
fulfill the charging requests. In this subsection, we compare
CAA with NN by measuring the average traveling distance
for AVs in order to get charged by the designated station.

TABLE 3: Comparison of different mechanisms of charging
station placement for different k value of charging stations
numbers.

opt.” | onl. k-means | off. | onl. |k val.
195.2 106.0 165.7[173.3 | +0
solar power(kW-h) | 246.8 122.1 206212202 +2
297.5 135.5 2199|2461 +4
32 6.1 45 | 43 +0
min-max dist.(km) [ 3.0 5.7 4.3 3.9 +2
29 55 40 | 3.3 +4
7.1 12.6 9.5 | 8.0 +0
# stations 9.1 14.6 115 [ 10.0 | +2
11.1 16.6 135 | 120 | +4
90.3 46.0 76.7 | 80.2 | +0
# completed req. |119.2 55.7 99.8 [111.2| +2
139.3 56.2 105.0 [ 123.7| +4
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Fig. 7 compares the two different strategies in weekdays
and weekends. Through the analysis of traffic flows, we
find that the traffic patterns are different for weekdays and
weekends (different rush hours). In the weekday as shown
by Fig. 7 (a), during the rush hours (6-9 am., 5-7 p.m.),
the average traveling distance is the highest, since charging
requests are high during these hours but the harvested solar
energy is not enough. With the decline of charging requests
and rising solar radiations, the traveling distance decreases
around the noon time. The distance bottoms at about 3
a.m., during which the charging requests are usually the
lowest (bedtime). CAA can save traveling distance from
about 19% to 26% in weekday. Note that NN does not
lead to less traveling distance. If the design follows the
naive NN strategy, the tension between the energy income
and demand is pronounced. Thus, the AVs would drain
energy storage at some popular stations and push the rest
customers to other stations with more distance.

Fig. 7 (b) indicates a slight shift of the busy hours from
8-12 p.m., (more sporadic during the daytime with several
peaks in the afternoon). Even more than the weekdays, CAA
saves the traveling distance from 12% to 51%. We find that
CAA can save more traveling distance than NN during the
night. Note that the charging stations requires surplus for
nighttime operations, so is more likely to deplete its energy
if the assignment is improperly scheduled. The proposed
strategy can always result more energy storage by saving,
thereby improving the system robustness.

8.5 Operating Range of AVs

The operating range is a major concern severely affecting
the wide adoption and promotion of electric AVs. In this
subsection, we benchmark the proposed strategies against
the traditional approaches [10], [11], [12], [16] with/without
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renewable energy and show additional benefits of cost sav-
ings.

We measure the operating range of AVs for different
density of charging stations during different seasons across
the evaluation period. In Fig. 8(a), we compare the operating
range for the “none”, “solar rooftop”, “solar station” and
“both” schemes, which represent the AVs solely depend on
themselves, with solar-harvesting rooftop, with solar charg-
ing stations, and integration of both, respectively. The range
of AVs equipped with solar rooftop enjoys an incremental
improvement (about 5%) compared with the traditional
AVs, which verifies our findings in Section 3 (about 3%).
The extra 2% improvement of operation range is actually
benefited from our energy-aware route planning scheme.
The results also indicate that the previous approach of [16]
does not have astonishing performance.

With low density of charging stations (lower than
1.6/(100km)?), the range is not significantly improved since
most of the AVs fail to reach a charging station before battery
depletion. However, it increases rapidly when the density
is above 2/(100km)2. We found that most of the charging
requests can reach the stations within 5km beyond this
threshold, which is only about 5 mins drive to get charged.
Moreover, solar rooftop further increases 10% operating
range with solar stations. It effectively compensates the extra
miles for the AVs to reach the charging station. Note that, if
the station density reaches 3/(100km)?, the operating range
of AVs can be extended for more than 3 times, which is quite
promising for large-scale applications in the future smart
cities.

Due to the seasonal change of solar income, we also
evaluate the operation range across the year. Shown in Fig.
8(b), the operating range is influenced by the climate. The
simulation is conducted at Jan., Apr., Jul., and Oct.. During
any month, “both” and “solar station” schemes perform
better than single “solar rooftop”, which achieve almost
twice of the operating range. While applying “both” scheme
for all 4 considered months, we find that the summer
months achieve almost 20% better performance than spring
and fall, and even 30% better than winter. Since “both”
schemes utilizing the advantages of both solar harvesting
and charging at solar power stations, the harvested energy
sometimes plays a crucial role, since the extra harvested
energy fills the inevitable energy gap to reach the charging
stations.

8.6 Utility of Shared AVs

We use the same traces of traffic by analyzing the traffic
data from [28] while changes the traces to trips that wait for
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Fig. 9: Utility achieved by shared AVs. (a) Utility of one AV.
(b) Utility of multiple AVs.

shared AVs to serve. The period T of simulation is set to 48
hrs, the time spent for fully charging the battery is set to one
hour with rapid charger technology [39], the service region
is set initially to 25 km?, and the average waiting time for
each trip is derived based on the average distance between
the finishing position and another beginning position within
the region. [21] is used as the benchmark.

As shown in Fig. 9 (a), the utility achieved by one AV is
compared between different mechanisms. “Opt.” represents
the optimal solution achieving the largest possible utility,
“Bound” represents the theoretical bound derived for our
algorithm (which is converted to 1/3 utility automatically
here), and “STA” is compared with the benchmark “[21]".
The optimal solution is derived by going through all com-
binations of chosen non-overlapping trips which satisfy the
energy requirement and choosing the combination with the
maximum utility. However, its time complexity is in the
order of all combinations of n trips, i.e. O(2"). The time
complexity of the STA algorithm is O(Tn) according to Sec-
tion 7.3. Therefore, our proposed polynomial-time algorithm
dominates the exponential-time optimal solution in terms of
time complexity.

We first compare the achieved utility under different
sizes of the region which contains all the trips. All mech-
anisms tend to increase initially, then decrease rapidly after
reaching the peak in the midst. For small regions, the
number of trips is inadequate, which results in low utility
due to the leisure time of AV; while the utility is also
diminished as the average waiting time added to each trip
increases and also the AV needs to travel a longer distance to
reach the next trip which also costs more energy. Compared
with the benchmark, our algorithm achieves an average of
98% increase. Though the theoretical approximation ratio is
3, our algorithm realizes an average of 76% utility of the
optimal utility.

As shown in Fig. 9 (b), the utility achieved by k AVs
is also studied for different durations of time. Due to the
space limit, only the cases of k = 2 and 3 are depicted here.
The increment of utility per unit of duration is observed
to increase through time due to more choices available for
a longer time, enabling the AVs to choose more efficient
trips. Here, efficiency means the average time spent for
completing one trip. The utility achieved by £ = 3 is less
than 1.5 times of k¥ = 2 because the third AV added can
not find the trips as efficient as the previous two AVs.
Our proposed algorithm maintains the scaling of utility due
to the increment of the number of serving AVs while the
improvement of the utility for the benchmark is limited.
In our algorithm, though the third AV has to choose after



the first two AVs, it can choose once in every iteration,
making it possible for the third AV to still choose many
efficient trips. For k = 2, our algorithm achieves about 52%
of the optimal and 167% of the benchmark; for k = 3, our
algorithm achieves about 53% of the optimal and 205% of
the benchmark.

9 CONCLUSIONS

This paper designs and optimizes a new energy provision-
ing framework to power electric autonomous vehicles in
future smart cities. Our study starts from finding an optimal
placement of solar-powered charging stations for optimal
coverage and cost minimization for AVs. The strategy can
be adjusted online stochastically to adapt to any shift in the
new energy/demand distributions. Based on the locations
of charging stations, the charging requests are assigned to
maximize the satisfaction of users in terms of traveling
distance under the budget of solar energy income. For each
trip request, the framework schedules the optimal route
for the AVs adaptively based on energy consumed and
harvested, along with the solar-harvesting rooftop design.
Benefiting from solar power, the scheduling of k£ shared
AVs is addressed using a 2k + 1 approximation algorithm
maximizing the overall utility. We demonstrate that the
proposed framework can extend the operating scope of
AVs, save energy depending on harvested solar energy, and
maximize the utility of shared AVs efficiently. In the paper,
we intend to construct a solar-powered AV network from
none, while the case of potential competitors who can also
deploy other such charging stations have not been discussed
and could be our future work.
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