
1

Static and Mobile Target k-Coverage in Wireless Rechargeable

Sensor Networks
Pengzhan Zhou, Cong Wang and Yuanyuan Yang

Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, NY 11794, USA

Abstract—Energy remains a major hurdle in running
computation-intensive tasks on wireless sensors. Recent efforts
have been made to employ a Mobile Charger (MC) to deliver
wireless power to sensors, which provides a promising solution
to the energy problem. Most of previous works in this area aim
at maintaining perpetual network operation at the expense of
high operating cost of MC. In the meanwhile, it is observed that
due to low cost of wireless sensors, they are usually deployed at
high density so there is abundant redundancy in their coverage in
the network. For such networks, it is possible to take advantage
of the redundancy to reduce the energy cost. In this paper,
we relax the strictness of perpetual operation by allowing some
sensors to temporarily run out of energy while still maintaining
target k-coverage in the network at lower cost of MC. We
first establish a theoretical model to analyze the performance
improvements under this new strategy. Then we organize sensors
into load-balanced clusters for target monitoring by a distributed
algorithm. Next, we propose a charging algorithm named λ-
GTSP Charging Algorithm to determine the optimal number of
sensors to be charged in each cluster to maintain k-coverage
in the network and derive the route for MC to charge them.
We further generalize the algorithm to encompass mobile targets
as well. Our extensive simulation results demonstrate significant
improvements of network scalability and cost saving that MC can
extend charging capability over 2-3 times with a reduction of 40%
of moving cost without sacrificing the network performance.

Index Terms—Wireless sensor networks, wireless charging,
target k-coverage, route planning.

I. INTRODUCTION

Recent advances in technology are leading the trend to

launch intelligent applications. These applications usually rely

on ubiquitous wireless sensors to capture and generate a huge

amount of data from multi-dimensions to detect, recognize

and classify objects/targets with high accuracy. However, en-

ergy consumption still remains a major challenge for wireless

sensors to conduct intensive data processing, computation and

communication. As an emerging technology, wireless charging

has provided a convenient way to charge the battery of a sensor

without wires or plugs. Sensors can be charged in distance by

either deploying static wireless transmitters [1], [2] or Mobile

Chargers (MCs) [4], [5], [7], [8], [11].

Most of the previous work consider perpetual network

operation as an ultimate goal whereas such ambition usually

comes at high cost. To ensure no sensor ever depletes energy,

MC must respond to energy demands all over the network

at any time and anywhere. It not only complicates system

designs (algorithms), but also makes it difficult to implement

in large networks with hundreds of sensors. In addition, these

works have not jointly considered charging and balancing the

workload of sensors to make charging of MC more efficient.

Low-cost wireless sensors are usually deployed at high den-

sity so there is abundant redundancy in their coverage. Taking

advantage of such redundancy, we can relax the strictness of

perpetual operation by allowing some nodes to temporarily

stay in zero energy status while still maintaining the network

functionality. To evaluate the sensing quality of such a strategy,

we consider a typical task, monitoring a set of targets in a

Wireless Sensor Network (WSN). Rather than keeping full-

coverage of targets all the time which requires turning on all the

sensors, we allow k-coverage of targets [12], where k is a user-

input based on various task requirements. In fact, with advances

in machine learning, k-coverage should be sufficient for many

applications, e.g., in a security monitoring application, images

from k camera sensors taken at different angles can recognize

objects with high accuracy.

Motivated by these observations, in this paper, we propose

a new framework, called k-coverage Wireless Rechargeable

Sensor Network (WRSN), where sensors are organized into

clusters around each target and it is required that at least k
sensors should be working in each cluster at any moment to

engage in sensing tasks to cover the target. In the meanwhile,

MC is adopted to meet energy demands from clusters. The

MC is usually more expensive compared with sensors, which

motivates us to improve its utility. In deriving performance

improvements, we focus on charging capability of one MC

but the results can be easily scaled to adopt multiple MCs. In

particular, the new framework raises several new challenges.

First, to what extent does MC improve its charging capability

under the new framework? Second, how are sensors organized

around targets autonomously and how do clusters balance

workload to make wireless charging more efficient? Third,

how many sensors should MC charge in each cluster while

still satisfying target k-coverage and what is the optimal route

planning strategy for MC? Finally, what if targets can move?

Can we extend the algorithm to handle targets with mobility?

To answer these questions, we first theoretically examine

the potential improvements in charging capability of MC in

terms of maximum distance it can cover in a one-dimensional

network and extend the result to a two-dimensional network as

well. Then we consider organizing sensors around each target

into a cluster and develop an iterative and distributed algorithm

to assign sensors in overlapped regions to different clusters,

and achieve uniform cluster size. To find the optimal number

of sensors MC should charge in each cluster, we formulate

the problem into an Integer Programming (IP) problem and

propose a new charging algorithm called λ-GTSP Charging

Algorithm. Finally, we establish a model to characterize mobile

targets as Brownian Motions [15] and expand the original

clusters to retain k-coverage of mobile targets. Realizing that

clusters cannot be expanded forever, we further derive a

condition to characterize when the process should terminate

and a new round of clustering should start.

The contributions of this paper is summarized as follows.

First, we propose a new framework that relaxes the stringent

full-coverage requirement in a WRSN to k-coverage while

maintaining network functionality. We theoretically prove the

improvement in charging capability of MC under our new

framework. To the best of our knowledge, this is the first work

that attempts to optimize network cost from the perspectives

of target coverage/sensor load balancing. Second, we formulate

the charging problem into an optimization problem in which

MC is scheduled to only charge a portion of zero-energy

nodes in each cluster. The actual number could be dynamic

and different for different clusters as long as the network

manages to maintain target k-coverage. Third, in contrast to

most of the previous work which only focuses on static targets,

we extend our work to cover mobile targets as well. Finally,

we conduct extensive simulations to evaluate performance and

compare with the previous work [6]–[8]. Our results indicate

that the new framework can extend charging capability of MC

significantly (over 3 times of covering area) and reduce about

40% of operating cost of MC. Meanwhile, more than 80%

target coverage rate is maintained for mobile targets during

operation.

The rest of the paper is organized as follows. Section

II studies related work. Section III introduces the network

model, assumptions and motivations of our work. Section IV

theoretically compares the charging capability of MC based on

different charging strategies. Section V studies how to balance

the cluster size. Section VI derives the number of sensors to

be charged in each cluster and plans the charging route for

MC. Section VII further considers mobile targets. Section VIII

evaluates the performance of the new framework and Section

IX concludes the paper.

II. RELATED WORK

Integrating wireless energy transfer to sensor networks has

been extensively studied recently. In [1], deployment problems

of wireless transmitters are studied to extend network lifetime.

In [2], adjusting the power level of wireless transmitters

such that overall electromagnetic radiations do not exceed a

safety threshold is studied. In [3], a new kind of mobile data

gathering mechanism named SenCar is proposed to achieve

longer network lifetime compared with static observer or other

mobile observers. Inductive wireless charging is studied in [4]–

[8], [11]. Since this technique is able to deliver hundreds watts

of energy over short distance, MC is usually employed to ap-

proach sensors in close proximity for high charging efficiency.

In [4], resonant repeaters are utilized in a new scheme to

more effectively respond to dynamic energy demands and cover

more nodes in WRSN. In [5], a hybrid network consisting

of nodes with different energy sources is proposed to reduce

the energy consumption of the network while maintaining the

performance. In [6], a greedy algorithm is designed to find a

charging sequence to maximize network lifetime. In [7], the

shortest Hamilton cycle is pre-planned through all the sensors

for wireless charging. In [8], MC receives real-time energy

status from sensors and makes charging decisions on-the-fly.

In [11], joint wireless charging and mobile data gathering is

considered.

The problem of k-coverage has been studied for WSNs. In

[13], Li et. al. utilized k-order Voronoi diagram to achieve k-

TABLE I
LIST OF IMPORTANT NOTATIONS

Notation Definition

k Required number of working sensors in each cluster
N Set of sensors
n Number of sensors
m Number of targets in the field
rs Sensing range of a sensor node
η Charging threshold of a cluster

Ti, Ci,Hi Target, cluster and cluster head of cluster (i), respectively
ni Number of nodes in cluster i
B Set of sub-clusters.
K Number of sub-clusters in each cluster.
l Estimated lifetime of a sensor with full battery
li Estimated lifetime of cluster i
Li Maximum lifetime of cluster i
v Moving speed of MC
∆t Time to charge a zero energy sensor to full capacity
λi Number of sensors to be charged in cluster i
µ Drift velocity of the mobile target.
tre Time for re-clustering for mobile targets
R Area traversed by the dynamic cluster before re-clustering.

coverage sensor deployment in a localized manner. In [14],

the k-area coverage algorithm is extended to the k-surface

coverage for 3-D surface. These work provides good guid-

ance, but we cannot implement their schemes directly due to:

1) triangular inequality does not hold anymore on irregular

3D surface; the fundamental Traveling Salesmen Problems

becomes difficult to solve; 2) clustering and load balancing

algorithms need to be re-designed since the shape of clusters

changes regarding to the terrain dynamics. Thus, in this paper,

we focus on solutions in the 2D space.

III. PRELIMINARIES

In this section, we describe the network model and assump-

tions of our work. Important notations used in this paper are

summarized in Table I.

A. Network Model and Assumptions

We assume that a set of sensors, N , are uniformly randomly

distributed in a sensing field, A, to monitor a set of identical

targets, T . The number of sensors and targets in the field are

n and m respectively. In addition, there is a Mobile Charger

(MC) equipped with a high-capacity battery, moving around in

the field to charge sensors wirelessly. When a sensor depletes

its energy, MC can deliver power to the sensor in proximity.

When MC depletes its own energy, it returns to the base station

to replace its battery.

In this paper, we adopt the magnetic coupling based wireless

charging [21]. This scheme allows effective flow of large

amount of energy over a short distance. We do not adopt

radiation-based strategies that could charge multiple sensors

because of the restriction on the wireless energy emitted. It

is often limited to 4W by FCC [22] and exceeding such

limit could cause health hazard. In our model, since charging

efficiency declines rapidly with the increment of distance, the

MC should approach sensors in close proximity for effective

charge. The effective charging range is about 0.5 meters. With

the latest advance in wireless charging technologies, the MC

might charge multiple sensors in distance in a foreseeable

future. However, since sensing range is much larger than the

charging distance, charging multiple sensors could yield low

energy efficiency.

We first analyze the case when targets are static [23]–

[25]. In practice, many applications require sensors to monitor

static targets (scene/view) such as security surveillance, traffic

monitoring, etc. Then we targets with slow motion. Sensors

have two operating modes, namely, working mode and sleeping

mode. In sleeping mode, sensors switch off CPU/radio/sensing

devices to save energy and we ignore energy consumption

in sleeping mode. All the nodes have sensing range rs. To

aggregate data/samples of targets, sensors within rs distance

of targets are organized into clusters, C, where ni sensors in

the i-th cluster denoted as Ci, monitor target Ti. In particular,

if transmission range r ≥ rs, data transmission within a cluster

can be done in 2-hop communication with minimum overhead.

Since classification error and noise persist in the state-of-

the-art sensing devices, data fusion from multiple sensors can

improve the sensing quality and decision accuracy [26]. Thus,

we require k sensors to stay in working mode in each cluster

at any time to monitor the target. In this case, we say sensors

around a target provide k-coverage where k is a user-input

depending on application specifics. k can be as small as 1
(1-coverage). On the other hand, k can also be extended to

ni to provide full-coverage, which has been the predominant

method in previous works [1], [2], [7], [8]. Clearly, it incurs

higher operating cost for MC to satisfy energy demands of all

the sensors in full-coverage.

We follow a k-coverage sensor scheduling approach. Ini-

tially, all the sensors have full battery capacity with lifetime l.
During operation, exact k sensors are in working mode, while

others remain in sleeping mode. Before the first batch of k
sensors deplete their energy, they randomly appoint the next

batch of k sensors (with full energy) to continue monitoring. If

the cluster has less than η percentage of alive nodes, the cluster

head sends a charging request to MC. We further define the

maximum lifetime of cluster i to be Li = ⌊ni

k ⌋l, where ⌊ni

k ⌋ is

the largest integer no greater than ni

k . Li is the time duration

until the cluster can no longer provide k-coverage. When a

sensor depletes its energy, it is also turned into sleeping mode

and waits for MC to charge.

The MC starts from the base station at a speed of v m/s

to fulfill energy requests received from sensors. The time to

charge the battery of a sensor from empty to full capacity is

∆t. For k-coverage, MC charges λi nodes in cluster Ci. We

optimize the choice of λi in Section VI-C. We make additional

assumptions as follows: 1) Sensors know their positions by

one-time configuration at the beginning; 2) The base station

calculates the charging route, and the route is sent to MC

through long range wireless communications.

B. Generalized Traveling Salesmen Problem

Since we only charge a portion of sensors, λi, in each cluster

Ci to keep k-coverage, a new route planning approach for

MC is needed. Most of the previous works directly adopt the

solution for Traveling Salesmen Problem (TSP) to establish a

Hamiltonian path through all the sensors. That is, the classic

TSP requires MC to visit all the nodes with energy charging re-

quests. In our k-coverage problem, we explore a generalization

of TSP called the Generalized Traveling Salesmen Problem

(GTSP) [19]. In GTSP, a salesman needs to find the shortest

Base Station

Mobile Charger

Target

Cluster Head

Sensor

Charging Route

Energy Message

Route

2-coverage in

each cluster

Load-balance

Clustering Partial Charge

Sleep Mode

Working Mode

Zero Energy

Fig. 1. An example of λ-GTSP charging framework providing target 2-
coverage for 3 targets.

path through some mutually exclusive sets of cities and the

path only includes one city from each set. In close analogy, our

objective is to find the shortest charging path through clusters

of sensors in which MC visits λi nodes in cluster Ci. Hence,

we call our new problem λ-GTSP.

The question is whether λ-GTSP can help us reduce the

moving cost of MC. The full-coverage in [7], [8] requires

MC to satisfy all energy charging requests. For a rectangular

sensing field of side length D1 and D2, a deterministic upper

bound of the shortest path traversing n nodes with charging

requests is derived as
√

2(n− 2)D1D2+2(D1+D2) [20]. In

contrast, in k-coverage, we only charge λi nodes for cluster

Ci so n is reduced to
∑

i λi. Since
√

2(n− 2)D1D2 is much

larger than 2(D1+D2), the ratio of tour length of MC derived

by λ-GTSP to the length derived by TSP can be approximated

as
√

2(
∑

i
λi − 2)D1D2 + 2(D1 +D2)

√

2(n− 2)D1D2 + 2(D1 +D2)
≈

√

∑

i
λi

n
. (1)

We can see that the cost saving to adopt k-coverage is

proportional to the square root of the ratio of numbers of nodes

charged. In practice, the actual number of nodes
∑

i λi is much

smaller than n. Since k-coverage consumes much less energy

than all-coverage, our new approach should reduce moving cost

of MC significantly.

Fig. 1 shows an example of the λ-GTSP charging framework

with target 2-coverage for 3 targets. The left two clusters

have overlapped regions, in which sensors are assigned to two

clusters evenly for load balance. After clustering, sensors send

their energy status to the cluster heads through the red dashed

message routes (not drawn in the upper-right cluster for clarity)

and the cluster heads send charging requests to the base station

if the remaining energy in the cluster is below the threshold.

Then MC starts from the base station and charges zero energy

sensors following the green charging route. It responds to as

many requests as possible while assuring target 2-coverage.

Thus, it only charges a portion of sensors in the first cluster

so sensors from other clusters can be served on time.

IV. CHARGING CAPABILITY OF MC IN A k-COVERAGE

NETWORK

Motivated by the potential cost saving of k-coverage net-

works, in this section, we theoretically derive the charging

capability of MC, which is represented by the scope or distance

d

d d

1st Cluster
The area not able to be covered if it

is required to charge all nodes

Target

Energy

Requests

Mobile

Charger

d

1st Cluster 2nd Cluster 3rd Cluster

1D All-

Charge

1D Partial

Charge

d d

1st Cluster 2nd Cluster 3rd Cluster

rs

d

Base

Station

Full-Energy

Charging

Route

Charging

2D Covering

Area

2D Partial

Charge
rs rs

Fig. 2. Comparison of the scope covered by all-charge and partial-charge.

of a field MC can cover. We compare it with the solutions

in previous works [7], [8], where all energy demands are

fulfilled in a single charging round. Since MC is usually much

more expensive compared to sensors, it is desirable to extend

its covering capability as much as possible. Therefore, for a

certain field, fewer MCs are needed in our framework. Our

analysis focuses on one MC but the results can be easily scaled

for multiple MCs. For analytical tractability, we first conduct

the theoretical analysis in a one-dimensional network and then

give the conditions on when the results for one-dimensional

networks can be applied to two-dimensional networks. We will

also examine the performance of two-dimensional networks by

simulations in Section VIII.

A. Covering Capability of MC in a One-Dimensional Network

As mentioned in the previous section, MC starts from the

base station to fulfill charging requests from m clusters. The

sensors within rs distance of each target are assigned to that

target to form a cluster. At any time, in each cluster, k sensors

are in working mode while others are in sleeping mode. If the

cluster has less than η percentage of alive nodes, it sends out

a charging request. The lifetime of a sensor is l, the charging

time from zero to full capacity is ∆t, and the speed of MC

is v. In addition, for simplicity, we assume that the number of

sensors in each cluster is a constant c and the distance between

two consecutive targets is a constant d as shown in Fig. 2.

The top two cases in Fig. 2 compare our approach with the

previous approach for k-coverage in a one-dimensional net-

work. Note that, for fairness, previous approach also only needs

to assure target k-coverage instead of target full-coverage.

The first approach (the previous approach) requires MC to

satisfy all energy demands whereas the second approach (our

approach) only requires to satisfy partial energy demands. In

particular, for the second approach, we assume that MC charges

an equal number of λ nodes in each cluster. In fact, λ could

be different for different clusters based on their energy status

and we will further optimize the value of λ in Section VI. We

compare the covering distance of the two approaches.

1) All-charge approach: It is not difficult to see that MC

needs to charge at least (1− η)c nodes in each cluster. Before

the arrival of MC, each cluster has residual lifetime li ≈ ηcl/k,

where ηc is the number of sensors that can work. Denote the

number of clusters MC can charge before the lifetime of any

0

λ(# of charging nodes)

Comparison of charging capability

510152020

c(cluster size)

15

1200

200

0

1000

800

600

400

10C
o
v
e
ri
n
g
 A

re
a
 (

d
is

ta
n
c
e
 i
n
 m

)

Charge λ sensors

Charge all sensors

Fig. 3. Comparison of charging capability of MC by all-charge and partial-
charge. d = 60m, l = 20h, ∆t = 0.5h, η = 20%, k = 2.

cluster expires as a variable x. The following inequality holds

x

[

(1− η)c∆t+
d

v

]

≤ min
{

ηcl

k
,
(1− η)cl

k

}

, (2)

where (1 − η)c∆t is the charging time needed in a cluster

and d/v is the traveling time of MC between two consecutive

clusters. The total time spent over x clusters should be less than

the lifetime li of each cluster. In addition, it should also be less

than the increment of lifetime (due to charging) of a cluster

denoted by (1−η)cl/k to guarantee perpetual operation. In this

way, at the end of a charging round, the ratio of the remaining

energy to the full energy in each cluster should be no less than

η so MC can cover such x clusters in a long run. Here we

stipulate that when (d/v)/((1 − η)c∆t) ≤ ǫ, i.e., the ratio of

traveling time to charging time is a very small value ǫ, so the

traveling time can be ignored. Note that ǫ is determined by the

accuracy requirement. Even for large networks, traveling time

between two targets hundreds of meters apart (1-5 minutes) is

still quite small compared to the charging time (60 minutes).

This condition for d can be written as

d ≤ ǫ(1− η)cv∆t. (3)

When Eq. (3) is satisfied, we can ignore the term d/v and

further simplify x as

x ≤ min
{

η

1− η
, 1
}

l

k∆t
. (4)

Then if η < 1/2, we have x ≤ ηl
(1−η)k∆t .

2) Partial-charge approach: In this approach, MC only

needs to charge λ sensors which are a portion of all sensors

in each cluster. We have 1 ≤ λ ≤ (1 − η)c, since λ cannot

exceed the number of nodes with zero energy. Similar to the

analysis above, we have

x
(

λ∆t+
d

v

)

≤ min
{ηcl

k
,
λl

k

}

,

x ≤ min
{ηc

λ
, 1
} l

k∆t
. (5)

If λ/c ≤ η, then we have x ≤ l
k∆t ; otherwise, x ≤ ηcl

λk∆t .

When λ/c ≤ η, the upper bound of x is l
k∆t , which is 1−η

η

times greater than x in Eq. (4). For example, if η = 20%,

MC can cover a distance 4 times longer in a one-dimensional

network using our approach. Therefore, we can utilize η <
1/2 and only charging a portion of zero energy sensors to

extend the charging capability of MC while still satisfying the

k-coverage requirement.

As an example, we compare the distance covered by MC

for the two approaches in Fig. 3. We observe that the covering

distance for charging λ nodes scales much better than charging

all nodes. For fixed cluster size c, the two approaches converge

as λ increases whereas more benefits are brought by charging

only a small λ number of nodes, e.g., the improvements can

be as high as 4 times.

B. Covering Capability of MC in a Two-Dimensional Network

We now explore the condition under which the above result

can be applied to a two-dimensional network (shown as the

third case in Fig. 2).

For convenience, we plot clusters as circles with radius rs
in Fig. 2. Recall that in Section III, for c sensors in a cluster of

radius rs, the upper bound of the shortest path is 2rs(
√
2c+2).

If it is less than d, then the traveling time within a cluster can

be ignored. The result for a one-dimensional network can be

used in a two-dimensional network when 2rs(
√
2c + 2) ≤ d,

which is

rs ≤ d

2(
√
2c+ 2)

. (6)

By applying Eq. (3) and Eq. (6), we obtain the maximum area

a cluster can occupy, 2rs·d ≤ [ǫ(1−η)cv∆t]2/(
√
2c+2). Since

clusters and targets have a one-to-one mapping, its reciprocal

yields a lower bound of target density ρm,

ρm ≥
√
2c+ 2

[ǫ(1− η)cv∆t]2
. (7)

If target density satisfies Eq. (7), in a two-dimensional network,

the charging capability of MC in terms of maximum number of

clusters it can handle can be calculated by applying the result

in Section IV-A.

V. FORMING CLUSTERS FOR TARGETS

In this section, we consider how to form clusters to monitor

the targets and also reduce the moving cost of MC. In general,

in a k-coverage network, sensors in a larger cluster can share

their workloads better and work less, whereas sensors in a

smaller cluster work more and consume energy faster thereby

requesting for charging more frequently. Our objective is to

balance the number of sensors among neighboring clusters

so that sensors would have similar loads and energy con-

sumptions. In this way, a single charging round can cover

more energy charging requests and reduce the moving cost

of MC. We briefly describe how to form original clusters and

select cluster heads. Then we investigate how sensors that can

monitor multiple targets are assigned into clusters to balance

cluster sizes.

A. Forming Cluster Considering Load Balance

A sensor can detect any target that is within its sensing range

rs. For those sensors that can only detect one target, we assign

them to form the original clusters {Ci}. Ci consists of the

sensors that can only detect target Ti. In case that all the nodes

around a target can also detect other targets, we initialize the

cluster with a randomly picked node. A cluster head is selected

for each cluster.

A number of algorithms have been proposed for cluster head

selection in WSNs. In [9], a centralized algorithm is proposed

to realize real-time head selection based on node concentration,

energy level and centrality. In [10], a distributed algorithm is

proposed to elect cluster head based on residual energy of

nodes and the average energy of the network. We adopt the

algorithm in [10] for cluster head election in our network.

However, the randomness of target locations may result in

overlapped clusters when targets are close. That is, a sensor

can detect multiple targets and henceforth, may be assigned

to multiple clusters. Next, we discuss how to resolve such

contention and ensure that any node in the overlapped regions

joins only one cluster and the variance of cluster size is reduced

as much as possible.

The set of cluster heads is denoted as H. Each head Hi ∈ H
manages cluster Ci which monitors target Ti. For brevity, we

use the same subscript notation of clusters and their associated

targets here interchangeably because they refer to the same

cluster at the high-level. As an example, an (unclustered) sensor

detecting multiple targets such as Ta in Ca and target Tb in

Cb (a, b ∈ T , C) is denoted by a tuple [Ta, Tb]. Tuples are

distinguished according to their elements, we denote the l-th
type tuple as ωl. |ωl| is the tuple size equal to the number of

targets contained in ωl. The set {ωl} is sorted in an ascending

order regarding |ωl|, i.e., |ωl| ≤ |ωl+1|, ∀l. To find nodes that

can monitor the same targets, we group nodes having the same

tuple ωl into a set Ψl. All these different Ψl form a bigger set

{Ψl}. Next, we first give an example for handling tuples with

|ωl| = 2.

At the beginning, a head Hi initializes a node count ni as the

number of sensors in the original cluster Ci. Then it progresses

to examine tuples with |ωl| = 2. For head Hi, it needs to

balance its cluster size by negotiating with the neighboring

cluster head Hj . Both Hi, Hj ∈ H and the two clusters Ci,

Cj share nij sensors. In other words, all these nij nodes can

detect and only detect targets i and j. Assume that the current

node count in cluster Cj is nj . Without loss of generality,

assume ni ≤ nj , the case for ni > nj can be similarly handled.

If ni + nij ≤ nj , then assign all shared nij nodes to Ci; if

ni + nij > nj , then assign ⌊(ni + nj + nij/2)⌋ − ni sensors

to Ci, and the rest of shared sensors to Cj .

For tuples with |ωl| = 2, the algorithm proceeds to examine

all pairs of neighboring cluster heads Hi, Hj ∈ H. Next, a new

round for tuples with |ωl| = 3 is initiated and the iteration

goes on until all the nodes in the overlapped regions have

been assigned to appropriate clusters. The algorithm keeps the

sensors with larger tuple size for later assignments since they

have more flexibility to join clusters compared with the sensors

that only detect fewer targets.

In general, the cluster size balancing algorithm is described

as follows. We go through the set {Ψl} from Ψ1. Among the

targets in tuple ω1, we find target Tk corresponding to the

cluster Ck with minimum nk. A node u is randomly picked

from Ψ1, and assigned to cluster Ck. Thus, nk is increased

by 1. Then we remove node u from Ψ1. For the remaining

nodes in Ψ1, we repeat the above process until Ψ1 is empty.

TABLE II
CLUSTER SIZE BALANCING ALGORITHM

Input: Set of different types of tuples {ωl};
sets of nodes having the same tuple ωl denoted as {Ψl};
original clusters {Ci} consisting of sensors only detecting Ti;
number of sensors in original cluster Ci denoted as ni.
Output: Set of size-balanced clusters {Ci}.
for l = 1, 2, . . . , |{Ψl}|

while Ψl 6= φ
Node u ∈ Ψl;
k ← argmin

i∈ωl

{ni};
Ck ← Ck

⋃{u}; nk ← nk + 1;
Ψl = Ψl \ {u}.
end while

end for

T1

T3

T2

C1
C2

C3
C1

C2

C1

C2

C3

C1

C1 C2 C3

Assign

sensors

Treat

clusters as

bins

Overlapped

Regions

Fig. 4. An example of balancing nodes in neighboring clusters.

The iteration continues for Ψ2, Ψ3, . . ., until the set {Ψl} is

exhausted. This algorithm is summarized in Table II.

Fig. 4 illustrates the cluster size balancing algorithm by an

analogy of placing balls (sensors) into bins (clusters). Here, we

have 3 clusters, C1, C2, C3 with 4 overlapped regions. Nodes

in the overlapped regions are colored in different colors. The

algorithm starts from the overlap between C1 and C2, which

shares 3 red balls. Note that red balls are only shared by C1

and C2, thus they cannot be assigned to C3. After balancing,

C1 and C2 are assigned 2 and 1 red balls respectively, so the

updated numbers of balls (sensors) in C1 and C2 become 5 and

6. Similarly, the next steps distribute green balls and yellow

balls shared by C1, C3 and C2, C3, respectively. Finally, the

purple ball shared by all three bins together is assigned to C1

since C1 has the least number of balls. We can see that after

the balancing, the numbers of nodes in C1, C2, C3 become 8,

7, and 8, respectively, which are close to each other.

We now analyze the message overhead of the above al-

gorithm. Note that for m clusters, although there may be
(

m
2

)

+
(

m
3

)

+ · · ·+
(

m
m

)

= 2m−m enumerations of overlapped

regions, the actual number of iterations is bounded by the

number of nodes n in the overlapped region. In each iteration,

only a constant number of messages are exchanged, and

number of iterations is at most n, so the overall message

overhead is O(n).

B. Spatial Characteristics of Communication Links

The actual communication range is related to the dynamics

of wireless channel and physical environment. In practice, there

could be cases that a further node has better communication

link. According to [17], such factors are empirical and difficult

to predict. Hence, for analytical tractability, we follow a general

and classic approach in [18], which models the receptive

energy in proportions to dα. α is a path loss exponent ranges

from −2 to −4. In implementations, we could substitute

this theoretical model to a practical one based on measured

signal levels, whereas the problem formulation and algorithms

proposed in this paper should still work.

VI. CHARGING SCHEDULING OF MOBILE CHARGER

In this section, we study the charging scheduling of MC

in a target k-coverage network. First, we propose a new

distance metric by jointly considering traveling distance and

cluster lifetime. Second, we find the shortest Hamilton path

through clusters by transforming GTSP to TSP. Based on the

charging sequence, we formulate the problem into an Integer

Programming problem to maximize the number of charged

nodes (λi, i ∈ C) in each cluster per unit lifetime. Finally,

we derive the so called λ-GTSP charging route, and give an

example to demonstrate the complete process in this section.

The above steps are altogether summarized as the λ-GTSP

Charging Algorithm.

A. New Distance Metric

Calculating the charging sequence without taking node life-

time into consideration may easily lead to infeasible solutions.

Intuitively, to maximize performance, MC needs to charge as

many nodes as possible. However, charging more sensors at the

beginning of the sequence would inevitably elongate the entire

charging process and postpone charging for subsequent nodes.

These nodes may deplete energy before MC arrives, which

violates the target k-coverage requirement. On the other hand,

to meet battery deadlines from all clusters, MC may visit only

one node from each cluster (λi = 1, ∀i ∈ C). Nevertheless,

this scheme is inefficient due to high moving cost, since MC

has to come back again for other charging requests eventually.

Therefore, our goal is to find a balance in between.

Consider a set of clusters C1, C2, . . . , Cq sending charging

requests. A cluster with limited lifetime later in this sequence

is a bottleneck since all the clusters ahead need to reduce their

charged nodes number λi until the charging time spent on them

no longer violates the charging schedule for the bottleneck

cluster. A natural solution is to push the bottleneck forward in

the charging sequence so its impact on the remaining clusters

is minimum. Hence, we introduce a new distance metric d′uv

d
′
uv = duv

lilj

LiLj

= duv
lilj

⌊ni

k
⌋⌊nj

k
⌋l2 , (8)

where duv is the Euclidean distance between nodes u and v,

which belong to clusters Ci and Cj separately. li/Li and lj/Lj

are the normalized lifetime for clusters Ci, Cj , where li is the

remaining lifetime and Li is the maximum lifetime of cluster

Ci. For example, if li = Li, lj = Lj , the new distance d′uv =
duv , whereas if li = Li/2, lj = Lj/2, d′uv = duv/4. If two

nodes in the field have shorter lifetime, their “distance” is also

much smaller. Thus, during tour planning, the edges between

nodes with less d′uv would be considered with higher priority,

and clusters of shorter lifetime can be visited earlier by MC.

Next, we develop such a tour planning algorithm based on this

new distance metric.

u

p vdpv’ = duv’

GTSP Route

TSP Route

Hamiltonian

Cycle

Zero-Energy

Full-Energy

Fig. 5. Derivation of GTSP route by solving TSP.

B. Transforming GTSP to TSP

Recall the definition in Section III, solving Generalized

Traveling Salesmen Problem (GTSP) for the target k-coverage

network gives the shortest route which visits exactly one node

in each cluster. In the following two Sections VI-C, VI-D,

charging route of MC is derived based on the GTSP route

calculated in this section.

To find the shortest route through clusters, we transform

GTSP into a TSP so that we can apply classic TSP algorithms

(e.g., nearest neighbor) for the problem. The transformation

process is based on the algorithm in [19]. Fig. 5 demonstrates

an example of the algorithm. First, a set of arbitrary Hamilto-

nian cycles are formed in each cluster. The Hamiltonian cycle

starts from any selected sensor, “visits” all the nodes with zero

energy exactly once and returns to the starting sensor. The

direction is picked arbitrarily (clockwise or counter-clockwise),

and henceforth, each node has its direct parent node. Second,

the distances along the Hamiltonian cycle is set to zero. As

shown in Fig. 5, d′pu = 0 since p, u are adjacent in the same

Hamiltonian cycle. For nodes u and v in different clusters, we

set the distance from u’s direct parent node p to v, d′pv = d′uv.

After the above steps, solving GTSP has been transformed into

solving TSP. Finally, based on these distances, we run a TSP

algorithm on all clusters to form the shortest path that traverses

all zero-energy nodes in each cluster, as denoted as the yellow

dashed lines in the figure. The route has one entering node

u and one exiting node p in each cluster. The exiting node

p is the parent node of the entering node u. Since we have

set d′pv = d′uv , u is selected as the only charging node in its

cluster, which solves the GTSP problem.

C. Optimizing λi

We further find the optimal number of nodes to be charged

in each cluster Ci. By solving GTSP, we obtain a charging se-

quence of clusters {C1, C2, . . . , Cq}. For convenience, denote

the traveling distance between two consecutive clusters Ci−1,

Ci as di. The lifetime li of cluster Ci can be found based on

k and residual energy of sensors,

li =
⌊ |Fi|

k

⌋

· l +
∑

j∈Wi
Ej

kcs
, (9)

where Fi is the set of sensors in sleeping mode with full

energy, Wi is the set of sensors in working mode, cs is average

energy consumption rate of a working sensor, Ej is residual

energy of node j. We formulate the optimization problem into

an Integer Programming with the objective of maximizing the

h i
h i

h i

h i

h i+1

h i+1

h i+1
h i+1

C i C i+1
GTSP Route

-GTSP Routel

Fig. 6. Derivation of λ-GTSP charging route.

total number of nodes charged per unit lifetime over all clusters

P1 : max

q
∑

i=1

λi

li
(10)

Subject to

j−1
∑

i=1

λi∆t+

j
∑

i=1

di/v ≤ lj , ∀j = 2, 3, . . . , q, (11)

1 ≤ λi ≤ N0
i , ∀i = 1, 2, . . . , q, (12)

where N0
i is the number of nodes that have depleted energy

in cluster Ci. λi in Eq. (10) can be considered as the benefits

brought by charging, which is further scaled by the reciprocal

lifetime of a cluster 1/li. In this way, if the lifetime of a

cluster is low, charging more sensors in it would bring more

benefits and charging clusters with long lifetime would bring

less benefits. We design the objective function in this way

so that limited resources from MC can be distributed better

among different clusters. In addition, Eq. (11) states that all

prior charging time plus traveling time to a cluster should be

less than its lifetime so it can guarantee k-coverage. Eq. (12)

stipulates that MC charges at least one and a maximum of N0
i

nodes.

Since Integer Programming is NP-complete [27], a simple

way is to adopt Linear Programming relaxation and round the

results to a smaller integer (take the floor operation at the end).

In our case, the efficient Integer Programming solver CPLEX

is used for deriving λi [28].

D. Calculating λ-GTSP

After λi has been calculated for each cluster, MC selects

which λi nodes should be added into the charging routes such

that the additive moving distance to the original GTSP route

is minimal. To prevent MC from deviating the GTSP route, a

sweeping sector is created by two lines that are parallel to the

moving trajectory of MC (as shown in Fig. 6). The sweeping

sector is gradually expanded to add more nodes with zero

energy until the sector contains λi nodes and TSP is solved

in each cluster to connect λi picked nodes by a shortest path.

Finally, a λ-GTSP charging route is generated which traverses

through λi nodes in each cluster calculated by the IP in Eq.

(10).

An example of the λ-GTSP charging algorithm is shown

in Fig. 6. A segment of the GTSP charging route is depicted

by the black arrows from cluster Ci to Ci+1. We focus on

the red nodes that have depleted energy. Assume that solving

the Integer Program P1: Eqs. (10), (11), (12) gives a solution

TABLE III
λ-GTSP CHARGING ALGORITHM

Input: A number of q simultaneous energy requests;
distance d′uv between nodes u, v; set of all the clusters {Ci};
lifetime of cluster Ci denoted as li.
Output: λ-GTSP charging route for MC.
Step 1: Construct (directed) Hamiltonian cycle in each cluster;

for adjacent nodes p, u in the same Hamiltonian cycle, d′pu ← 0;
for nodes p, v from different clusters, p is parent of u , d′pv ← d′uv .
Step 2: Based on new d′uv, solve TSP, obtain
GTSP route ← ⋃

i

{entering point of TSP route in Ci};
charging sequence← {C1, C2, . . . , Cq}.
Step 3: Solve Integer Program P1: Eqs. (10), (11), (12), obtain λi.
Step 4: Width of sweeping sector hi = 0; δ = width increment;
for all the clusters, do
hi ← hi + δ, construct sweeping sector of width hi;
Zi ← set of zero-energy sensors in sweeping sector;

until |Zi| = λi, ∀i = 1, 2, . . . , q.
Obtain λ-GTSP route by solving TSP over

⋃

i

{Zi}.

X-Axis (m)

0 20 40 60 80 100

Y
-A

x
is

 (
m

)

0

20

40

60

80

100
GTSP route for mobile charger

Sensor

Target

Base Station

Cluster

GTSP
Route

X-Axis (m)

0 20 40 60 80 100

Y
-A

x
is

 (
m

)

0

20

40

60

80

100
λ-GTSP route for mobile charger

λ-GTSP
Route

(a) (b)

Fig. 7. A running example of λ-GTSP network. (a) GTSP route for mobile
charger. (b) λ-GTSP route for mobile charger.

λi = 5 and λi+1 = 4. The sweeping sectors are contained

within the dashed lines (hi and hi+1 distances away from the

GTSP trajectory). Note that hi and hi+1 could be different

since the processes are performed independently in different

clusters. We denote the set of zero-energy sensors within the

sweeping sector for Ci as Zi. hi increases from 0 by δ each

time until λi is reached (|Zi| = 5 and |Zi+1| = 4 for λi = 5,

λi+1 = 4). The shortest Hamiltonian path through all these

λi nodes in Ci is the λ-GTSP route represented by the green

arrows in Fig. 6.

The above calculations can be done at the base station and

disseminated to MC through long range wireless communi-

cations such as LTE. We summarize all the above process

discussed in section VI as λ-GTSP Charging Algorithm in

Table III.

E. An Example of λ-GTSP Network

We demonstrate the process of λ-GTSP algorithm in Fig. 7

by taking a snapshot during the operation. We set the number

of targets to 7 in a square field comprised of 60 sensors. The

sensors within sensing range rs of targets are organized into

clusters by the distributed cluster size balancing algorithm in

Section V. Upon receiving charging requests from the clusters,

base station derives the GTSP route denoted as the blue lines in

Fig. 7(a) based on the new distance metric. Finally, the λ-GTSP

algorithm calculates number of charged nodes λi for each

cluster and iteratively finds those sensors along the original

GTSP trajectory and the corresponding λ-GTSP route in Fig.

7(b).

F. Optimizing the Selection of Working Sensors

In the previous discussions, k alive sensors are randomly

picked and turned into working mode in each cluster. How-

ever, this method may incur extra traveling cost on the MC

since the selection is random. Based on this observation, an

algorithm named K-means Working Sensors Determination

Algorithm is proposed by applying K-means clustering [29] to

determine which sensors should be woken up. The algorithm

aggregates sensors in proximity into some sub-clusters, and

sensors within one sub-cluster are turned on at first, which

reduces the movement of MC during charging operations. To

avoid ambiguity between K-means and k-coverage, capital K
is used here in K-means. By applying K-means algorithm

in each cluster, the sensors are divided into a set of K sub-

clusters B = {B1, B2, . . . , BK}, so that the intra-cluster sum

of squares (i.e. variance) is minimized,

argmin
B

K
∑

i=1

∑

x,y∈Bi

||x− y||2. (13)

x and y are the positions of any two sensors in the sub-

cluster Bi. Here, partitioning is based on the Euclidean distance

and each cluster is further divided into several sub-clusters.

Utilizing this property, k working sensors can be picked from

one sub-cluster until all the sensors deplete their energy in

the sub-cluster. Within a sub-cluster, the shortest path through

all the sensors is found by solving a TSP. Then k sensors

are woken successively along the path. If the energy of all

sensors within a sub-cluster has depleted, the nearest sensor in

another sub-cluster with full battery will be picked. A TSP is

solved again in the new sub-cluster, and another shortest path

is formed, where sensors are chosen in the same way along the

path. We can see that rather than random selections, the sensors

with energy depletion can aggregate so that additional moving

cost from the MC can be saved. Partitioning is conducted one-

time at the beginning, and the sub-clusters remain fixed in the

rest of the process. After charging is completed in one cluster,

k sensors need to be picked to start a new round of target

monitoring. To aggregate energy-depleted sensors, the sub-

cluster that has the largest number of energy-depleted sensors

is chosen and the process repeats. The algorithm is summarized

in Table IV.

For the complexity of the algorithm, a popular approxima-

tion algorithm called Lloyd’s Algorithm is applied one-time,

whose complexity is O(nKi) [30], where i is the number of

iterations. For each round of charging, TSP is solved for each

sub-cluster. Since TSP is NP-hard, the well-known Nearest

Neighbor (NN) algorithm is applied as a heuristic algorithm

with good empirical performance, whose time complexity is

O(n2) [31]. Applying NN algorithm K times for the K sub-

clusters in cluster Ci takes O(n2
i). For the whole field, the time

complexity of solving TSP is O(n2).

G. Interaction of Route and λi

The choice of λi has an impact on the charging route,

and vice versa. A two tier scheduling scheme concentrates

energy consumption to those sensors to be reclaimed by a

Mobile Repairman (MR) [37]. However, this method may

TABLE IV
K -MEANS WORKING SENSORS DETERMINATION ALGORITHM

Input: Cluster C; Parameter K.
Output: Sequence of k working sensors in C.
Solve K-means clustering in C,
Get set of sub-clusters B ← {B1, B2, . . . , BK}.
s← argmax

1≤j≤|B|

|{x : x is depleted and x ∈ Bj}|.
Start: Run TSP for Bs, get the shortest path Ps.

While |Ps| ≥ K
Activate the first k sensors in Ps.
Until k sensors deplete energy,

Remove them from Ps and Bs.
End Until

End While
P ← Ps, u← the last node in Ps;
s← argmin

1≤j≤|B|,j 6=s,x∈Bj

||x − u||.

Activate k − |P| sensors in Bs; Remove them from Bs.
Return to Start

not be readily applicable in our circumstance since energy

consumption of sensors cannot be fully controlled, i.e. it is

determined by the real-time position of targets and the value

of k-coverage. The dispatch of mobile chargers relies on

the energy consumptions of sensors. Reducing the interaction

between energy consumption and route planning could extend

the network lifetime. We take the following several steps to

achieve this. First, sensors with charging requests are restricted

within the sensing range of each target. Therefore, the extra

distances traveled due to the choices of charged sensors is

restricted to a low level. Second, k working sensors are chosen

according to K-means clustering within each cluster so that the

charging requests are concentrated. Third, the λ-GTSP route is

modified from the original GTSP route, which is the shortest

route connecting the clusters sending charging requests. Thus,

the route derived from λ-GTSP is close to the optimal solution.

In the future, we plan to find the optimal charging strategy

considering the interactions between them.

VII. MOBILE TARGETS

In this section, we extend our algorithms to handle mobile

targets and demonstrate that it only requires minimum changes.

On the other hand, since the mobility pattern of targets is

dynamic, for effectiveness, we allow the network to re-cluster

at certain points. Thus, we give the condition on when such

re-clustering is needed.

A. Cluster Expansion

In practice, there are a growing number of applications

that require sensors to not only monitor stationary targets

but also mobile targets. For example, imaging sensors can

utilize machine learning algorithms to detect pedestrian, and

environmental sensors deployed in the habitat can monitor

migration patterns of animals. Since the mobility patterns are

specific in different applications, we present a general study

when targets have random mobility and model their movements

by 2-dimensional Brownian motion. After the first discovery

of random motion of particles in fluid, Brownian motion

finds many applications in the field of physics, finance and

engineering [15]. In [16], the moving trajectories of targets in

a WSN are characterized by Brownian motion. In such a model,

Future Location

of Target

Sensors in

Original Cluster

Sensors Added

after t1 time

Sensors Added

after t2 time

Target’s Trajectory

Cluster Boundary’s

Trajectory

Current Location

of Target

Cluster Head
Clustering

Message Route

Fig. 8. Dynamic reclustering by extension of cluster radius.

a target has equal chances to move towards any direction. The

model is memoryless such that the preceding step of a target

is independent of its succeeding step.

Since sensors are stationary, we need to know the deviation

of target positions regarding their initial positions over time. It

is represented by the mean square displacement,

< x2 >= 2 · dim ·Dt, (14)

where dim is the dimensions of the space (2 for the 2-

dimensional sensing field), and D (m2/s) represents the diffu-

sion coefficient of target, and t is a time span. The diffusion

coefficient D is proportional to the moving speed of a target

so a higher D corresponds to faster speed. In this paper,

we have assumed the targets are identical so they have the

same diffusion coefficient D. The square root of mean square

displacement represents the expected displacement of target

over time. For a 2-dimensional field,
√
< x2 > = 2

√
Dt.

Based on the expected displacement of targets, clusters

should expand their boundaries accordingly to cover targets

with high probability. For static targets, the boundary of a

cluster is fixed (at a maximum of rs). For mobile targets,

after observing a target for t time, the expected displacement

is 2
√
Dt so this value should be added to rs as the new radius

of cluster. It can be done by the cluster head to propagate a

message at time t to the nodes that are h = ⌈(rs +2
√
Dt)/r⌉

hops away, where r is the transmission range of sensor.

That is, a node outside the original cluster falls into h-hop

communication range after some time t and this node has not

joined any cluster yet. It will join at time t to monitor the

target if the expanded boundary reaches the node. An example

of cluster expansion is demonstrated in Fig. 8.

B. Re-clustering Condition

As we have seen, to maintain k-coverage of a mobile target,

the cluster should expand to add more sensors for monitoring.

Such expansion cannot continue forever due to following

reasons. First, the cluster boundary at time t only represents the

expected target displacement, it is possible that the target has

already moved out of the cluster. Second, the number of sensors

that participate in monitoring the moving target also increases

to assure target k-coverage. For the original cluster of area

πr2s , the number of working sensors per unit area is k/(πr2s).
For uniform sensor distributions, this number is increased to

(rs + 2
√
Dt)2k/r2s at t to maintain the density of working

sensors in expanded cluster. The expansion should stop before

MC can no longer cover all charging requests in the sensing

field. Re-clustering should be initiated when either one of the

two conditions is met. Next, we derive the condition for re-

clustering.

As discussed in Section IV, if the target density ρm in an

area satisfies Eq. (7), then the maximum number of targets that

one MC can cover is l/(k∆t). For the expanded cluster here,

k should be replaced by (rs+2
√
Dt)2k/r2s . Thus, the quantity

of targets that one MC can handle should be greater than or

equal to the total number of targets in the field A.

lr2s

(rs + 2
√
Dt)2k∆t

≥ m. (15)

Solving the equation, we derive the upper bound of t for re-

clustering. Combining with the first case, the re-clustering time

is denoted as

tre = min
{

τ,
r2s
4D

(

√

l

km∆t
− 1

)2}

, (16)

where τ is the time when the target moves out of cluster; other-

wise, τ = ∞. Compared with re-clustering time, re-clustering

frequency fre is more intuitive, which is the reciprocal of the

re-clustering time and denoted as,

fre = max
{

1

τ
,
4D

r2s

1

(
√

l

km∆t
− 1)2

}

. (17)

fre represents the times of re-clustering in unit time. For

example, if the re-clustering time is 120 days, then the re-

clustering frequency is 0.25 times/month.

C. Brownian Motion with Drift

In the above subsections, we assumed that the motion pattern

of targets follows pure Brownian motion. In practice, targets

may exhibit other patterns, such as heading towards a specific

direction. For example, animals could be attracted by food

sources, and move randomly with a certain drift towards the

source [32]. Forest fire may be driven by the speed and

direction of the wind [33]. These patterns can be modeled

by Brownian motion with drift [34]. Here, the animals or

phenomena are the targets to monitor in our model. The

displacement of such target can be represented as follows,

Xt = µt+ σZt, (18)

where t is the time, µ is the drift velocity, σ is the scale

parameter, and Zt is a standard Brownian motion random

variable [34]. The variance of Brownian motion with drift and

the variance of the standard Brownian motion are equivalent.

Since < X2
t >= V ar(Xt)+ < Xt >2, and Eq. (14) shows

that < X2
t >= 2 ·dim ·Dt , the mean square displacement can

be represented by,

< X
2

t >= 2 · dim ·Dt+ (µt)2. (19)

For a 2-dimensional field, the expected displacement is the

square root of the mean square displacement (
√

4Dt+ (µt)2).

By the same token, the radius of the cluster associated with

TABLE V
DYNAMIC CLUSTERING ALGORITHM FOR BROWNIAN MOTION WITH

DRIFT

Input: Initial radius rs of cluster; time increment δ

Set of sensors N , set of targets T , set of position of sensors ~P ;
diffusion coefficient D of target, drift velocity µ of target.
Output: Dynamic clusters for each target changing with time t.

Re-clustering time tre ← r2s
4D

(
√

l

km∆t
− 1

)2

;

While t < tre,
t← t+ δ;
For ∀i ∈ T , If i moves out of Ci, Then T \ {i};
∀j ∈ N , dij ← |~Pj − (~Pi + µt)|;

If dij ≤ rs + 2
√
Dt

Then Ci ← Ci

⋃{j}
If dij > rs + 2

√
Dt, and j ∈ Ci;

Then Ci ← Ci \ {j}.
End For

End While

the target should extend to rs +
√

4Dt+ (µt)2 at time t. For

clarity, let y = (µt)2, the new re-clustering time is,

tre = min
{

τ,
r2s
4D

(

√

l

km∆t
− 1

)2

− y

4D

}

, (20)

where τ is the time when the target moves out of cluster;

otherwise, τ = ∞. The associated re-clustering frequency is,

fre = max
{

1

τ
, 4D · 1

r2s(
√

l

km∆t
− 1)2 − y

}

. (21)

Comparing Eq. (20) with the re-clustering time for Brownian

motion as shown in Eq. (16), the second term in the bracket

decreases by y/(4D). Since y is proportional to the square

of time and drift velocity, it declines rapidly. It leads to a

large drop of the re-clustering time and a large increase of the

re-clustering frequency and makes the re-clustering message

overhead too large to handle. This observation necessitates a

new re-clustering strategy to offset the decrease of re-clustering

time.

D. Probabilistic Dynamic Clustering Algorithm

In this subsection, we propose a new dynamic clustering

algorithm, and study the message overhead and re-clustering

time.

1) Clusters with Drifting Motions: The new scheme extends

the algorithm proposed in Section VII-A and adapts to motion

patterns with other probabilistic models. Previously, cluster

boundary expands with a fixed center, which may not cover

the target with a drift velocity. This observation motivates

us to introduce mobility to the cluster as well. It allows the

cluster to move at the same velocity µ along the same direction

with targets. The radius of the new cluster is rs + 2
√
Dt and

the centroid is µt distance away from the original centroid

at time t. In practice, a message with the original position,

diffusion coefficient and drift velocity of the target is flooded

in the network. The sensor receiving the message calculates its

distance from the moving centroid, and determines whether it is

included in the cluster or not. The new scheme is summarized

in Table V.

Cluster mobility counteracts the impact of the drift veloc-

ity from targets. Thus, the new re-clustering time is tre =

min
{

τ,
r2s
4D

(
√

l
km∆t − 1

)2}

, that is the same with the re-

clustering time derived in Section VII-B. The new scheme

can be extended to other motion patterns of diverse proba-

bilistic models. From probability distributions, expected target

movement at t is < Xt > and the centroid of the new

cluster at t is set to < Xt > distance away from the

original position. The variance of target movement at time t is

< X2
t > − < Xt >

2 and the radius of the new cluster at time

t is set to rs +
√

< X2
t > − < Xt >2. The re-clustering time

can be derived similarly as shown in Section VII-B.

To make sure k sensors are available around the target, we

need to increase the number of working sensors in a cluster

from k to (rs+
√

< X2
t > − < Xt >2)2k/r2s . Since the max-

imum number of targets covered by one MC is l/(k∆t), the

new upper bound of MC’s covering capability can be derived

by replacing k with (rs +
√

< X2
t > − < Xt >2)2k/r2s . It

needs to be greater than the total number of targets,

lr2s
(rs+ < X2

t > − < Xt >2)2k∆t
≥ m. (22)

Eq. (22) provides a lower bound of re-clustering time given

the probability distribution.

2) Message Overhead of the Original Clustering: We ana-

lyze the message overhead of the original clustering strategy.

At the beginning, the cluster head broadcasts a timestamped

message to surrounding sensors, which includes the current

location of the target, the radius rs of the cluster, and the

expected diffusion coefficient D of the target. When a sensor

u outside of the cluster receives this message, it calculates

when it needs to join the cluster by (dvu − rs)
2/(4D), where

dvu is the distance between target v and sensor u. After u
joins the cluster, it broadcasts a message to the surrounding

sensors to inform about its position and cluster. Before re-

clustering, the number of sensors in the cluster is bounded

by ρπ(rs + 2
√
Dtre)

2. For a field of area S, the density of

sensors is ρ = n/S. For each sensor, only a constant number

of messages are sent during cluster expansion. Therefore,

the message overhead of the original clustering strategy is

O(n(rs + 2
√
Dtre)

2).
3) Clustering Message Overhead of the Probabilistic Dy-

namic Clustering: Next, we analyze the message overhead of

the new clustering strategy. At the beginning, the cluster head

broadcasts a message to surrounding sensors with an additional

value of the drift velocity µ. The sensor outside of the cluster

joins the cluster at time (dvu − rs)
2/(4D). Different from the

previous clustering algorithm, dvu is now changing regarding

t, where dvu = ||~Pu − (~Pv + ~µt)||. ~Pu is the position vector

of the sensor u, ~Pv is the position vector of the target at the

beginning and ~µ is the drift velocity vector of the target. dvu
is compared with the cluster radius rs + 2

√
Dt to determine

whether u should be included in the expanded cluster. If dvu is

smaller than rs+2
√
Dt, then the sensor u should be included;

otherwise, it should be removed.

Property 1. The total number of messages sent by any

sensor in probabilistic dynamic clustering is bounded by a

constant.

Proof: As shown in Fig. 9, if the trajectory of the cluster

centroid is located in the region above the horizontal axis, i.e.

the solid green trajectories, then dvu decreases first and then

v

u

Cluster

Centroid

Sensor

Centroid’s

Trajectory

Facing Down

Centroid’s

Trajectory

Facing Up

dvu

Fig. 9. Two cases of distance dvu between cluster centroid and sensor

evolving with time.

increases. In this case, the curves of dvu are shown by the

convex curves (i.e., Cases I-III) in Fig. 10. If the trajectory of

the target is located in the region below the horizontal axis,

i.e. the dashed blue trajectories, then dvu in monotonically

increasing. In this case, the curves of dvu are shown by the

concave curves (i.e., Cases IV-VI) in Fig. 10.

There are 6 cases of the sensor’s affiliations with the cluster

as shown in Fig. 10, based on the relative values of dvu and

cluster radius. For Case I, one sensor included in the starting

cluster remains included in the cluster before the re-clustering

time tre. For Case II, one sensor included in the starting cluster

is removed from the cluster at some time and never rejoins the

cluster before tre. For Case III, one sensor included in the

starting cluster is removed from the cluster and rejoins the

cluster in later time before tre. For Case IV, one sensor not

included in the starting cluster never joins the cluster before

tre. For Case V, one sensor not included in the starting cluster

joins the cluster at some time and never leaves the cluster

before tre. For Case VI, one sensor not included in the starting

cluster joins the cluster at some time and is removed from the

cluster in a later time before tre.

The radius of the cluster is a monotonic increasing curve

denoted by a solid black line. It is a concave curve since the

increasing rate of radius of the cluster is governed by
√
t. If

the curve of dvu is below the curve of cluster radius, then

the corresponding sensor should be included in the cluster;

otherwise, it should be excluded from the cluster. In Fig.

10, Cases I-III denoted by concave curves correspond to the

trajectories of the target below the horizontal line in Fig.

9. Cases IV-VI denoted by convex curves correspond to the

trajectories of the target above the horizontal line in Fig. 9. It

is easy to observe that the six cases in Fig. 9 have included

all possible affiliations of dvu with the radius of the cluster.

Hence, a sensor can join and leave the cluster at most once so

the number of messages sent during the probabilistic dynamic

clustering before tre is bounded by a constant for each sensor.

Note that, the centroid of the cluster is moving while the

cluster radius increases. Property 1 eliminates the possibilities

of any sensor joining and being removed from the cluster for

unbounded times before tre.

Since the message overhead for each sensor is bounded by a

constant, to calculate total message overhead, we just need to

rs

Cluster Radius

dvu Case I

dvu Case II

dvu Case III

dvu Case IV

dvu Case V

dvu Case VI

tre

time

length

I

II

III

IV

VVI

Fig. 10. Different cases of relative locations of dvu and cluster radius.

calculate how many sensors are included in the cluster at least

once during the process. In the case without drift velocity, the

cluster with radius rs + 2
√
Dtre covers all the sensors.

Property 2. The region traversed by the cluster in the

probabilistic dynamic clustering is convex.

Proof: A convex region is a closed region where the line

segment connecting any pair of points within the region is

also included in the region [35]. We prove the property by

calculating the tangent value of angle α in Fig. 11. From time 0
to t, the distance traveled by the centroid is equal to µt, and the

increase of cluster radius is 2
√
Dt. Therefore, tanα is equal to

the ratio of the radius’s increment and the distance traveled by

the centroid, tanα = 2
√
Dt/(µt) = (2

√
D/µ)(1/

√
t). Since

tanα is proportional to 1/
√
t, α is a monotonically decreasing

function. The property of the angle α indicates that the area

traversed in probabilistic dynamic clustering is a convex region

as shown in Fig. 11.

Further, for convex region, the lower bound of its area R
can be estimated by the combinations of a half of the starting

cluster (the blue region), a half of the final cluster (the green

region) and the trapezoid connecting them (the orange region).

The area of the half of the original cluster is πr2s/2 and final

cluster is π(rs + 2
√
Dtre)

2/2. The area of the trapezoid is

2(rs +
√
Dtre)µtre. Therefore, the lower bound of the convex

region is,

R ≥ 2(rs +
√
Dtre)µtre +

π[r2s + (rs + 2
√
Dtre)

2)]

2
. (23)

Note that the probabilistic dynamic clustering has longer

tre compared with the original clustering, though the message

overhead may increase. Therefore, the lower bound for R is

considered to exhibit the potential increment of the message

overhead of the probabilistic dynamic clustering.

4) Comparison of the Message Overhead: Since the density

of the sensors is ρ = n/S, and the messages sent by each

sensor have an upper bound, message overhead of the new

clustering strategy is O(nR) compared to the original cluster-

ing strategy that has O(n(rs+2
√
Dtre)

2). If rs is dominating,

then both strategies are O(nr2s). If tre is dominating, then

the previous strategy has O(ntre) and the new strategy has

O(nt
3/2
re) which comes from the first term on the right hand

side of Eq. (23). If rs and tre are comparable, then the message

overhead of both strategies are O(nr2s). As a result, the prob-

abilistic dynamic clustering algorithm has longer re-clustering

time compared with the previous strategy with targets having

drift velocity. If re-clustering time is dominating, the new

s
r

2
s re
r Dt+

a
tm

2 Dt

Cluster at Time 0

Cluster at Time tre
Cluster at Time t

Moving Direction of Centroid

Fig. 11. Area covered by the clusters in the probabilistic dynamic clustering.

strategy has larger message overhead O(nt
3/2
re) compared with

the message overhead O(ntre) of the old strategy; otherwise,

the new strategy achieves the same order of message overhead

compared with the old one.

Remarks: The precise area R of the convex region can be

calculated by applying surface integral (more complex) [36].

This only changes the first term on the right side of the

inequality (23) into (8/3)(rs +
√
Dtre)µtre which does not

have much difference. The lower bound given by calculating

the area of trapezoid and two half clusters has achieved a good

estimation in our case.

VIII. PERFORMANCE EVALUATIONS

We evaluate the performance of the proposed target k-

coverage WRSN framework by a discrete-event simulator and

compare it with previous works that require “all-charge” [7],

[8], in which all the zero energy sensors in a cluster are charged

by the MC.

In our simulation, N = 500 sensors are uniformly randomly

distributed in a square sensing field of side length L = 160 m

and m = 10 targets are randomly scattered. Node and target

densities are 1.9 nodes/100m2, 4 targets/104m2, respectively.

Time is equally slotted (1 min) and the average energy con-

sumption rate of working sensor is 12 J/min [38]. A typical

sensing range rs is set to 15 m. Sensors have chargeable Li-

Ion battery of 1200 mAh capacity and 3.7 V working voltage

with ∆t = 30 mins charging time from empty to full. The MC

moves at a constant speed of 1 m/s [39] and consumes et = 5
J/m. When the percentage of sensors that can work in a cluster

is lower than a threshold η = 20%, the cluster head sends out

an energy request. The total simulation time is typically set

to 60 days. For all of the following simulation results, the

standard deviation for each data point is derived through 100

times independent experiments for each case, which are shown

as the error bars in each figure.

A. Charging Capability

First, we evaluate charging capability of MC in the new

framework compared with previous works of all-charge [7],

[8]. The charging capability is measured by the maximum area

covered by one MC without violating k-coverage. In Fig. 12,

our algorithm is called λ-charge. For an area with lentgh L,

two schemes must succeed 100 independent tests in order to

cover it.

Fig. 12(a) compares covering area of MC between charging

λi and all the nodes in a cluster, where k is varied from

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8

Sensor density (1/100m2)

0

5

10

15
C

o
v
e

ri
n

g
 a

re
a

 (
m

2
)

×104 Covering area vs. density

λ-charge k=1
λ-charge k=2
λ-charge k=3
all-charge k=1
all-charge k=2
all-charge k=3

2 3 4 5 6 7 8 9 10

Field area (m2) ×104

0

20

40

60

80

100

120

C
o

v
e

ri
n

g
 f

a
ilu

re
 t

im
e

 (
d

a
y
)

Failure time vs. field area

λ-charge k=1
λ-charge k=2
λ-charge k=3
all-charge k=1
all-charge k=2
all-charge k=3

(a) (b)

Fig. 12. Covering area and covering failure time. (a) Covering area of one
MC vs. sensor density. (b) Target k-covering failure time vs. field area.

1− 3 for both cases. For fairness in comparison, “all-charge”

algorithm also just needs to maintain target k-coverage instead

of target all-coverage during simulation. First, we observe

that the covering area decreases with the increment of k
for both frameworks. This is because higher k means higher

energy consumptions and energy demands, which confines

the charging scope of MC. Second, for specific k-coverage

requirement, our framework surpasses the previous framework

on covering area of MC. Our framework still achieves about

50% increase of covering area of MC for k = 1, 2 even if node

density is doubled.

Next, to examine the performance of our framework further,

we allow the simulation to run longer until k-coverage no

longer holds, as shown in Fig. 12(b). Reaching 120 days means

that the MC maintains k-coverage over the entire time period.

First, failure occurs much faster in a larger field, since larger

field incurs higher energy cost and MC can barely satisfy

all the energy demands. Second, for the same field , our

framework can support the network much longer than the all-

charge framework.

It is worth mentioning that when k = 1, our framework with

only one MC successfully accomplishes k-coverage at any time

during the 120 days whereas the curve of all-charge framework

drops sharply which can only sustain 15 days. The results show

that our new framework can extend network lifetime by a large

extent.

B. Moving Cost of MC

We compare the moving cost in our framework (applying λ-

GTSP) to the real-time charging algorithm proposed in [8]. For

fairness, the algorithm in [8] also charges the same number of

λi sensors in each cluster whereas the locations of these sensors

are picked randomly and the choices of charged clusters are

planned at real-time.

Fig. 13(a) shows the ratio of moving cost of MC using our

λ-GTSP algorithm to the cost of real-time algorithm. We can

see that our algorithm saves 40%−50% energy due to λ-GTSP

charging algorithm and careful selection of λi sensors in each

cluster. It is interesting to see that receiving more simultaneous

charging requests actually helps us reduce more operating cost

on the MC compared to the scheme in [8] that only charges the

next nearest cluster. This is because the MC always enjoys the

benefits brought by λ-GTSP once a charging route is planned

appropriately.

Fig. 13(b) shows the relation between the total traveling cost

of MC and number of targets. The traveling cost of MC is

defined as the energy consumed by MC for traveling in the

whole simulation duration (e.g. 120 days). The cost increases

1 2 3 4 5 6 7

Number of Simultaneous Requests

40

50

60

70

80

90

100

T
ra

v
e

lli
n

g
 C

o
s
t

R
a

ti
o

 (
%

)

Travelling cost ratio vs. requests

k=1, l=277m
k=1, l=200m
k=2, l=200m
k=3, l=160m

2 4 6 8 10 12 14 16 18 20

Number of Targets

0

0.5

1

1.5

2

2.5

3

3.5

T
ra

v
e

lin
g

 C
o

s
ts

 (
J
)

10
5Travelling costs comparison

GTSP, k=1
GTSP, k=2
Real-time, k=1
Real-time, k=2

(a) (b)

Fig. 13. Comparison of moving cost of MC. (a) Moving cost ratio vs. number
of simultaneous energy requests. (b) Moving cost vs. number of targets.

2 4 6 8 10 12 14 16 18 20

Number of Targets

0

0.5

1

1.5

2

T
ra

v
e

lin
g

 C
o

s
ts

 (
J
)

×105Travelling costs comparison

λ-GTSP, k=1
λ-GTSP, k=2
K=2, k=1
K=2, k=2
K=3, k=1
K=3, k=2

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8

Sensor density (1/100m
2
)

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

C
o

v
e

ri
n

g
 a

re
a

 (
m

2
)

×10
5 Covering area vs. density

λ-GTSP, k=1
λ-GTSP, k=2
K=2, k=1
K=2, k=2
K=3, k=1
K=3, k=2

(a) (b)

Fig. 14. Traveling cost and covering area of MC by comparing λ-GTSP
and K-means Working Sensor Determination Algorithm. (a) Moving cost vs.
number of targets. (b) Covering area of one MC vs. sensor density.

linearly as the number of targets grows. This is because that

MC has to meet rising energy demands from sensors (monitor

more targets). For different k-coverage requirements, λ-GTSP

can always provide a cost saving of more than 50% as the

number of targets increases.

C. Charging Capability and Moving Cost of the MC

In this subsection, the covering capability and traveling cost

of MC are evaluated by comparing the algorithm proposed in

Section VI-F with the λ − GTSP algorithm that randomly

picks k working sensors. The original algorithm is compared

with the case where K = 2 and K = 3. For the same k value,

the traveling cost decreases if k sensors are chosen wisely

via the K-means partition. K = 2 gives the best cost saving

on the MC among different K values. For k = 1, K = 2
and K = 3 increases the covering area of one MC by an

average of 35% and 14% respectively. If K ≥ 3, the size of

each sub-cluster decreases. New sub-clusters need to be picked

frequently, which may potentially increase MC’s traveling cost.

Thus, K = 2 yields the best saving. In Fig. 14 (b), we can see

that covering area of MC shows similar results. This is because

energy saving on MC provides more energy for charging and

better schedules to meet sensors’ battery deadlines.

D. Coverage Percentage and Re-clustering Time for Mobile

Targets

Next, we evaluate the performance of our framework for

mobile targets. Fig. 15(a) shows the average percentage of

targets being k-covered. 15 targets are randomly distributed in

a square field of side length 160 m. 2000 sensors are distributed

in a larger square field of side length 320 m which contains the

smaller field, which alleviates the impact of field boundaries.

The diffusion coefficient of target D is set to 3.6 m2/day.

The target coverage rate is the ratio between k-covered and

total targets. For the same k value, dynamic clustering can

5 10 15 20 25 30

Time (day)

0

0.2

0.4

0.6

0.8

1
A

v
e

ra
g

e
 T

a
rg

e
t

C
o

v
e

ra
g

e
 P

c
t.

 (
%

)
Comparison of target coverage pct.

Dynamic, k=1

Dynamic, k=2

Dynamic, k=3

Static, k=1

Static, k=2

Static, k=3

0.9 3.6 6.3 9.0

Diffusion Coefficient D (m
2
/day)

0

1

2

3

4

5

6

7

A
v
e
ra

g
e
 R

e
-c

lu
s
te

ri
n
g
 T

im
e
 (

d
a
y
) Re-clustering time vs. diffusion coefficient

k=1
k=2
k=3

(a) (b)

Fig. 15. Average target k-coverage percentage and re-clustering time. (a)
Comparison of target k-coverage percentage between dynamic clustering and
static clustering. (b) Re-clustering time vs. diffusion coefficient for different
k.

5 10 15 20 25 30

Time (day)

-0.5

0

0.5

1

A
v
e

ra
g

e
 T

a
rg

e
t

C
o

v
e

ra
g

e
 P

c
t.

 (
%

)

Comparison of target coverage pct.

Modified, µ=1

Modified, µ=1.5

Modified, µ=2
Original, µ=1

Original µ=1.5

Original, µ=2

1 1.5 2 2.5

Drift Velocity (m/day)

0

200

400

600

800

1000

M
e

s
s
a

g
e

 O
v
e

rh
e

a
d

 (
p

a
c
k
e

ts
/d

a
y
)

Message overhead vs. drift
Load Balance
Clustering
Communication

(a) (b)

Fig. 16. Average target 1-coverage percentage and message overhead. (a)
Comparison of target 1-coverage percentage for original clustering strategy
and modified clustering strategy. (b) Stacked message overhead (for the same
µ, from the left to the right are D=2 modified, D=2 original, D=4 modified, and
D=4 original respectively) vs. drift velocity µ for different diffusion coefficient
D(m2/day).

maintain much higher target coverage rate compared to static

one. Coverage declines with time, since the variance of target

locations is getting larger. For k = 1 − 3, dynamic clustering

can maintain at least 80% coverage rate in 30 days.

Fig. 15(b) demonstrates the change of average re-clustering

time for different target mobility. If a target moves out of the

cluster or the MC can no longer fulfill the charging requests, re-

clustering is needed. As shown, the re-clustering time decreases

as the diffusion coefficient of target increases and smaller

k corresponds to longer re-clustering time. As for the re-

clustering frequency, it increases as the diffusion coefficient

of target increases and smaller k corresponds to smaller re-

clustering frequency.

E. Coverage Percentage and Re-clustering Time

We evaluate the target coverage percentage in time by

comparing the proposed strategies. The results are shown in

Fig. 16 (a). The movement of targets follows Brownian motion

with drift. The diffusion and drift coefficients are 3.6m2/day

and 2m/day respectively [40]. Target is successfully covered

if it is 1-covered.

The drift velocity µ is set in the range from 1 m/day to

2.5 m/day and the diffusion coefficient is set in the range

from 0.9 m2/day to 9.0 m2/day. At the current stage, our

WSN is designed to monitor targets with slow motions such as

glacier melting, spread of desert, or herds that move slowly. For

higher speed targets, a solution is to form clusters according

to the current positions of targets. Yet, it suffers from much

higher message overhead to keep track of the targets and the

subsequent charging strategy will be also affected.

In Fig. 16 (a), it is observed that the average target coverage

percentages for both strategies decrease in time. However, the

modified strategy exhibits much higher target coverage rate for

1 1.5 2 2.5

Drift Velocity (m/day)

0

2

4

6

8

A
v
e

ra
g

e
 R

e
-c

lu
s
te

ri
n

g
 T

im
e

 (
d

a
y
)

Re-clustering time vs. drift

D=2,Mdf

D=2,Org

D=4,Mdf

D=4,Org

2 4 6 8 10

Field area (m2) ×104

0

5

10

15

P
a

c
k
e

ts
 p

e
r

d
a

y
 (
×

 1
0

3
)

Message packets vs. field area

all-charge
λ-charge k=1
λ-charge k=2
λ-charge k=3

(a) (b)

Fig. 17. Average re-clustering time and the packets of the whole network.
(a) Average re-clustering time vs. the drift velocity µ of the mobile targets.
(b) Packets of the whole network vs. the area of the field

all the µ. It is also observed that the target coverage rate of

modified strategy is almost the same for three µ values. This

is reasonable since the modified strategy adjusts the positions

of the cluster’s centroid according to the expected position of

the target. In contrast, the original strategy is affected by the

µ value. The slope of the coverage rate is decreasing rapidly

with the increase of µ values. The target tends to get closer

to the boundary or even moves out of the cluster, resulting in

failed coverage.

In Fig. 16 (b), we evaluate the message overhead for both

clustering strategies. Note that, We adopt CSMA/CA protocol

for the MAC layer and handle packet loss by ARQ (Automatic

Repeat reQuest) [41]. The packet loss and retransmission

scheme are accumulated into the message overhead in our

simulation.

The message overhead is shown in a stacked manner. Threes

components of the message overhead includes the clustering/re-

clustering overhead, load balance overhead and communication

overhead within clusters. Fig. 16 (b) shows that the com-

munication contributes to the most part, while the clustering

contributes the next and load balance contributes to the least.

The increase of message overhead is compensated by the

decrease of re-clustering overhead.

F. Message Overhead and Total Packets

In Fig. 17 (a), we evaluate the average re-clustering time

of different clustering strategies for the mobile targets. For

same D, the re-clustering time is not affected by µ for the

modified strategy. In contrast, re-clustering time drops rapidly

for the original strategy. For the same strategy, the increase

of diffusion coefficient results in the decrease of re-clustering

time. It is obvious that the modified strategy has significant

increase of re-clustering time compared to the original strategy

and demonstrates good performance with an increasing µ.

In Fig. 17 (b), the packets transmitted or received through

the whole network is simulated and are shown in the units of

kilo packets per day. The total packets increase faster with the

increasing of the field area, since larger field involves more

communications and needs to spend more energy to transmit

the messages to the destination considering the distance and

possible failures. Smaller k corresponds to fewer packets since

fewer sensors are in the working mode and fewer data need to

be transmitted.

IX. CONCLUSIONS

In this paper, we have considered target k-coverage in

WRSNs. First, we conduct theoretical analysis on the improve-

ment of charging capability of MC by only charging a portion

of sensors. Second, we study a distributed algorithm that can

assign sensors into balanced clusters around targets. Third, we

optimize the number of sensors being charged in each cluster

while guaranteeing target k-coverage. A λ-GTSP charging

algorithm is proposed while working sensors are picked wisely.

Next, we further consider mobile targets of different motion

patterns such that original clusters are expanded until a re-

clustering condition is met. Finally, we demonstrate that the

new framework can greatly improve the charging capability of

MC and reduce the operating cost.

X. ACKNOWLEDGMENT

The work in this paper was supported by the U.S. National

Science Foundation under Grant No. ECCS-1307576.

REFERENCES

[1] S. He, J. Chen, F. Jiang, D. Yau, G. Xing and Y. Sun, “Energy provi-
sioning in wireless rechargeable sensor networks,” IEEE Trans. Mobile
Computing, vol. 12, no. 10, pp. 1931-1942, Oct. 2013.

[2] H. Dai, Y. Liu, G. Chen, X. Wu and T. He, “Safe charging for wireless
power transfer,” IEEE INFOCOM, 2014.

[3] M. Ma and Y. Yang, “SenCar: An energy efficient data gathering mecha-
nism for large scale multihop sensor networks,” IEEE Trans. Parallel and

Distributed Systems, vol. 18, no. 10, pp. 1476-1488, 2007.
[4] C. Wang, J. Li, F. Ye, and Y. Yang, “Improve charging capability for

wireless rechargeable sensor networks using resonant repeaters,” IEEE
ICDCS, 2015.

[5] C. Wang, J. Li, Y. Yang and F. Ye, “A hybrid framework combining solar
energy harvesting and wireless charging for wireless sensor networks,”
IEEE INFOCOM, 2016.

[6] Y. Peng, Z. Li, W. Zhang and D. Qiao, “Prolonging sensor network lifetime
through wireless charging,” IEEE RTSS, 2010.

[7] Y. Shi, L. Xie, Y. Hou and H. Sherali, “On renewable sensor networks
with wireless energy transfer,” IEEE INFOCOM, 2011.

[8] C. Wang, J. Li, F. Ye and Y. Yang, “NETWRAP: an NDN based real-time
wireless recharging framework for wireless sensor networks,” IEEE Trans.

Mobile Computing, vol. 13, no. 6, pp. 1283-1297, 2014.
[9] I. Gupta, D. Riordan and S. Sampalli, “Cluster-head election using fuzzy

logic for wireless sensor netwokrs,” IEEE CNSR, 2005.
[10] L. Qing, Q. Zhu and M. Wang, “Design of a distributed energy-

efficient clustering algorithm for heterogeneous wireless sensor networks,”
Computer Communications, vol. 29, pp. 2230-2237, 2006.

[11] M. Zhao, J. Li and Y. Yang, “A framework of joint mobile energy re-
plenishment and data gathering in wireless rechargeable sensor networks,”
IEEE Trans. Mobile Computing, vol. 13, no. 12, pp. 1536-1233, 2014.

[12] C. Huang and Y. Tseng, “The coverage problem in a wireless sensor
network,” Proc. ACM Int. Conf. Wireless Sensor Networks and Application
(WSNA), pp. 115-121, 2003.

[13] F. Li, J. Luo, S.Q. Xin, W.P. Wang, and Y. He, “LAACAD: Load
balancing k-area coverage through autonomous deployment in wireless
sensor networks.” IEEE ICDCS, 2012, pp. 566-575.

[14] F. Li, J. Luo, S.Q. Xin, W.P. Wang, and Y. He, “Autonomous Deployment
for Load Balancing k-Surface Coverage in Sensor Networks,” IEEE Trans.

Wireless Communications, vol. 14, no. 1, pp. 279-293, 2015.

[15] K. Ioannis and S. Shreve, “Brownian motion and stochastic calculus,”
Springer Science and Business Media, 2012.

[16] W. Wei, T. He, C. Bisdikian, D. Goeckel, B. Jiang, L. Kaplan and D.
Towsley, “Impact of in-network aggregation on target tracking quality
under network delays,” IEEE JSAC, 2013.

[17] N. Baccour, A. Koubaa, L. Mottola, M. Zuniga, H. Youssef, C. Alberto
Boano, and M. Alves. “Radio link quality estimation in wireless sensor
networks: A survey.” ACM Trans. Sensor Networks, vol. 8, no. 4, 2012.

[18] W. R. Heinzelman, A. Chandrakasan and H. Balakrishnan, “Energy-
efficient communication protocol for wireless microsensor networks,”
IEEE HICSS, 2000.

[19] V. Dimitrijevic and Z. Saric, “An efficient transformation of the general-
ized traveling salesman problem into the traveling salesman problem on
digraphs,” Information Science, 1997.

[20] P. Jaillet, Probabilistic Traveling Salesman Problem, Ph.D. Dissertation,
MIT, 1985.

[21] A. Kurs, A. Karalis, R. Moffatt, J.. Joannopoulos, P. Fisher, and M. Sol-
jacic. “Wireless power transfer via strongly coupled magnetic resonances.”
Science 317, no. 5834, 2007, pp. 83-86.

[22] “http://www.afar.net/tutorials/fcc-rules”, FCC Rules for Unlicensed Wire-

less Equipment Operating in the ISM Bands.
[23] Q. Zhao and M. Gurusamy, “Lifetime maximization for connected target

coverage in wireless sensor networks,” IEEE/ACM Trans. Networking,
2008.

[24] M. Cardei, M. Thai, Y. Li and W. Wu, “Energy-efficient target coverage
in wireless sensor newworks,” IEEE INFOCOM, 2005.

[25] J. Ai and A. Abouzeid, “Coverage by directional sensors in randomly de-
ployed wireless sensor networks,” Journal of Combinatorial Optimization,
vol. 11, no. 1, pp. 21-41, 2006.

[26] D. Hall and S. McMullen, Mathematical Techniques in Multisensor Data

Fusion, Artech House, 1992.
[27] A. Schrijver, Theory of Linear and Integer Programming, Wiley, 1998.
[28] IBM CPLEX, User’s Manual for CPLEX, International Business Ma-

chines Corporation, 2009.
[29] J. MacQueen, “Some methods for classification and analysis of multi-

variate observations,” Proc. of 5th Berkeley Symposium on Math. Statistics

and Probability, 1967, pp. 281-97.
[30] D.M. Christopher, P. Raghavan and S. Hinrich. “Introduction to infor-

mation retrieval.” An Introduction To Information Retrieval, 2008.
[31] G. Laporte, “The traveling salesman problem: An overview of exact

and approximate algorithms.” European Journal of Operational Research,
1992.

[32] K.E. McCluney and J.L. Sabo, “Tracing water sources of terrestrial
animal populations with stable isotopes: laboratory tests with crickets and
spiders,” PloS one 5, 2010.

[33] “https://www.nps.gov/fire/wildland-fire/learning-center/fire-in-
depth.cfm”, Fire In-Depth.

[34] A.N. Borodin, and S. Paavo, “Brownian Motion with Drift,” Handbook

of Brownian MotionłFacts and Formulae, 1996.
[35] “https://en.wikipedia.org/wiki/Convex set,” Convex Set, Wikipedia.

[36] “https://en.wikipedia.org/wiki/Surface integral” Surface Integral,

Wikipedia.

[37] B. Tong, G. Wang, W. Zhang and C. Wang, “Node reclamation and
replacement for long-lived sensor networks.” IEEE Trans. Parallel and

Distributed Systems, vol. 22, no. 9, pp. 1550-1563, 2011.
[38] S. Chen, J. Yao and Y. Wu. “Analysis of the power consumption for

wireless sensor network node based on Zigbee.” Procedia Engineering,
2012, pp. 1994-1998.

[39] Y. Peng, Z. Li , W. Zhang and D. Qiao. “Prolonging sensor network
lifetime through wireless charging.” IEEE RTSS, 2010, pp. 129-139.

[40] B. McClintock, R. King, L. Thomas, J. Matthiopoulos, B. McConnell
and J. Morales. “A general discret-time modeling framework for animal
movement using multistate random walks.” Ecological Monographs, vol.
82, no. 3, 2012, pp. 335-349.

[41] S. Khan, M. Moosa, F. Naeem, M. Alizai and J. Kim. “Protocols and
mechanisms to recover failed packets in wireless networks: History and
evolution.” IEEE Access, 2016, pp. 4207-4224.

Pengzhan Zhou received the B.S. degree in Electri-
cal Engineering from Shanghai Jiaotong University,
Shanghai China. He is currently working towards
the PhD degree at the Department of Electrical and
Computer Engineering, Stony Brook University, New
York. His research interests include wireless sensor
networks, performance evaluation of network proto-
cols and algorithms.

Cong Wang received the B.Eng degree in Infor-
mation Engineering from the Chinese University of
Hong Kong and Ph.D. in Computer and Electrical
Engineering from Stony Brook University. He is an
assistant professor at Old Dominion University in
Norfolk, VA. His research interests include mobile
computing, data privacy, energy efficiency and opti-
mization.

Yuanyuan Yang received the BEng and MS degrees
in computer science and engineering from Tsinghua
University, Beijing, China, and the MSE and PhD
degrees in computer science from Johns Hopkins
University, Baltimore, Maryland. She is a SUNY
Distinguished Professor of computer engineering and
computer science at Stony Brook University, New
York, and is currently on leave at the National
Science Foundation as a Program Director. Her re-
search interests include edge computing, data center
networks, cloud computing and wireless networks.

She has published about 400 papers in major journals and refereed conference
proceedings and holds seven US patents in these areas. She is currently
the Associate Editor-in-Chief for IEEE Transactions on Cloud Computing
and an Associate Editor for ACM Computing Surveys. She has served as
an Associate Editor-in-Chief and Associated Editor for IEEE Transactions
on Computers and Associate Editor for IEEE Transactions on Parallel and
Distributed Systems. She has also served as a general chair, program chair,
or vice chair for several major conferences and a program committee member
for numerous conferences. She is an IEEE Fellow.

