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Abstract—Multi-armed bandits problem has been widelg utilized in economy-related areas. Incentives are explored in the sharing
r

economy to inspire users for better resource allocation.

evious works build a budget-feasible incentive mechanism to learn users’

cost distribution. However, they only consider a special case that all tasks are considered as the same. The general problem asks for
finding a solution when the cost for different tasks varies. In this paper, we investigate this problem by considering a system with &
levels of difficulty. We present two incentivizing strategies for offline and online implementation, and formally derive the ratio of utility
between them in different scenarios. We propose a regret-minimizing mechanism to decide incentives by dynamically adjusting budget
assignment and learning from users’ cost distributions. We further extend the problem to a more generalized k-MAB problem by
removing the contextual information of difficulties. CUE-UCB algorithm is proposed to address the online advertisement problem for
multi-platforms. Our experiment demonstrates utility improvement about 7 times and time saving of 54% to meet a utility objective
compared to the previous works in sharing economy, and up to 175% increment of utility for online advertising.

Index Terms—Reinforcement learning, multi-armed bandits, incentivizing mechanism, sharing economy, online advertisement

1 INTRODUCTION

Recent trends of applying Reinforcement Learning (RL)
mechanisms in economy related areas have shed light
on better resolutions to these human-involved fields. Eco-
nomic problems such as sharing economy, incentivizing
mechanisms, online advertising, gambling-like problems
are highly complicated due to the dynamic and unpre-
dicted nature of the involving humans. The performance
of traditionally heuristic algorithms is diminished in face
of the varying cases due to human actions. However, the
reinforcement learning can explore and exploit the human
factors, which automatically provides ongoing solutions
while also converges to the best solutions simultaneously
via learning the behaviors of the participants dealt with.

The design of incentivizing mechanisms in the sharing
economy is a motivating example. The sharing economy
has become one of the fastest growing business, with the
success of Airbnb, Uber, Pace (bike sharing) and Bird (e-
scooter sharing). These platforms provide new ways of
accommodation and transportation. However, as users tend
to act on their own interest, utility is a major problem that
many businesses are facing. For example, some bike-sharing
systems allow customers to drop off at any location. Though
these policies best cater to the customer experience, for
consistent utility in the system, companies need to commit
significant resources to rebalance the bike distribution [1]
or send maintenance crew for charging the e-scooters. Such
large maintenance overhead drives several bike-sharing
platforms to the verge of bankruptcy recently [2].

Previous research proposed to seek user cooperation
with monetary incentives. Incentives are provided in mo-
bile sensing tasks [3], [4], [5], which typically assume that
users bid truthfully to execute tasks. Yet, the private cost
of users is often unknown to the system. Building on the
budget feasible methods [6], [7], incentives are explored in
crowdsourcing tasks to learn private cost distribution and
maximize utility [8]. They design fixed incentives to explore
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the users’ costs. Incentive has been utilized to improve
efficiency in the sharing economy recently. In bike sharing
systems, incentives are given to the riders who are willing to
cooperate and reposition their bikes to designated locations,
thus rebalancing the distributions of bikes among different
stations [9], [10]. Similarly, incentives determined by ma-
chine learning are offered to encourage users for taking
different options such as renting an apartment with no
review rating [11]. Compared with traditional algorithms,
learning-based algorithms are more capable of addressing
the dynamic scenarios due to human participation.

Although these works laid the foundations of incen-
tivizing users for maximizing utility, they only consider
a special case that all tasks are treated uniformly and a
single distribution is learned to represent the cost profiles.
In general, tasks could entail heterogeneous amount of
efforts from users. For instance, in bike sharing, if there
are several stations available, riders are more willing to
reposition their bikes to the ones that are closer; riding to
stations in further distance demands more efforts. While
encouraging tenants to take different rental options, they
may rank their own lists based on commute distance and
safety. These external factors are reflected on users’ choices
(or implicitly, their cost for different tasks), which in turn,
determine the amount of incentives to maximize the overall
utility. Leveraging such context information helps learn the
cost distributions more accurately. Therefore, based on the
efforts required, we partition the tasks into different levels
of difficulty and learn a cost distribution on each level.
To solve this new problem, a naive solution is to invoke
the mechanism of [8] independently across all levels. Yet,
how to satisfy the total budget, and at the same time,
maximize utility is still a difficult problem. Hence, the main
challenge is to find an online budget-feasible incentivizing
mechanism by considering heterogenous levels of difficulty
and assigning appropriate budget for each level, such that
the system utility is maximized.

To tackle this challenge, this paper studies an incentiviz-
ing system with arbitrary k levels of difficulty satisfying an
overall budget. First, we derive optimal offline and online
solutions with varied and fixed incentives, respectively. Then
we analyze the utility ratio between these approaches in the
worst case (bound of 2k given arbitrary budget assignment)
and the case with constant bound (bound of 2 given a



reasonable budget assignment). To implement the fixed
incentive strategy, we propose a mechanism to determine
incentives online by exploring the cost distributions from
the incoming users, and dynamically allocating the budget
assigned to different levels.

We notice that, in the designs of incentivizing mech-
anisms in the mentioned works [7], [8], [9], [11], [13],
a reinforcement learning mechanism named Multi-Armed
Bandits with Knapsack (MABwK) is widely adopted. This
motivates us to further combine the study of generalized
MAB problem with the idea of considering heterogenous
levels of MABs.

In the MABwK problem [23], one of multiple arms
(actions) can be chosen at the cost of some resources every
time, resulting in a stochastic reward associated with each
arm. The reward distributions and the mean rewards are
unknown a priori. The learner expects to maximize the total
rewards acquired while not exceeding the budget of any
resource. The traditional MAB is a special case of MABwWK
consuming only resource of time, and in this paper we
study the general case of MABwWK!. Through the actions
taken, the reward distributions of arms can be learned,
which helps the learner to take better actions afterwards.
The learner faces an exploitation-and-exploration dilemma:
1) exploiting the current knowledge and making the best
decision based on them 2) exploring sub-optimal arms to
acquire new knowledge and expecting more rewards in the
future.

Like [7], 8], [9], [11], [13], the MAB related mechanisms
can be utilized to explore the user behaviors, design reverse
auction schemes, and incentivize users to participate in
crowdsourcing. However, all these works only deal with
one MAB system at the same time, which can not handle
the case that multiple and independent MABs exist simul-
taneously. For example, the online multi-platform adver-
tising needs to determine the advertising strategies across
multiple independent advertisement platforms (e.g. Google,
Youtube, Twitter etc.).Users’ responses to the advertising of
one platform are unknown beforehand, and are learned in
an ongoing way via the feedbacks from the users. Different
platforms with its unique group of users can be treated
as different MABs. They need to be jointly considered in
order to maximize the number of clicks of advertisements
with given advertising budget, i.e. to minimize the cost-
per-click. Similar problems are formulated as a new kind
of reinforcement learning problem, which is named k-MAB
problem in this paper.

The study of generalized k-MAB is more challenging
than the design of incentivizing mechanism for the system
of k-level difficulties since we can not sort each MAB
according to measures like difficulties. For k-MAB problem,
it is challenging to derive algorithms to find the optimal
solution achieving the balance between the exploitation of
current knowledge and exploration of known knowledge.
In order to address this, [zz] we consider a three dimen-
sional cost functions, calculate its optimal solution, and
propose a mechanism to learn the user cost function and
the best strategy.[zz]

The contributions of this paper are three-folds:

e We propose a new reinforcement learning problem
named k-MAB. For its general case where the diffi-
culties of each MAB can be sorted, we propose an on-
line incentivizing mechanism with 2-approximation
bound. The bound is also proved to be the best per-
formance bound that any mechanism can achieve.

o We propose CUE-UCB mechanism to solve the gen-
eralized k-MAB problem. By combining the utility
function and the efficiency function statistically, we

1. We briefly denote MABwWK as MAB hereafter for conciseness.

propose a mechanism to find the best MAB and arm
among k independent MABs for the first time. The
regret analysis is given.

e We conduct a case study of electric bike-sharing
and mobile advertisement click, and evaluate the
proposed mechanisms on two public datasets. Com-
pared to the previous works, the experiments
demonstrate that our mechanism used for bike-
sharing not only achieves about 7 times utility, but
also saves 54% time to reach a utility objective.
For mobile advertisement, the proposed CUE-UCB
algorithm improves the utility up to 175%.

The rest of the paper is organized as follows. Section 2
studies literature. Section 3 discusses motivation and the
system model. Section 4 theoretically studies the mecha-
nisms. Section 5 proposes the k-level online incentivizing
mechanism to address the special case. Section 6 studies
the generalized k-MAB problem and proposes solutions.
Section 7 evaluates the performance of proposed mecha-
nism via the case study of e-bike repositioning and online
advertising. Section 8 concludes the paper.

2 RELATED WORKS
2.1 Incentivizing Mechanisms

There is a plethora of literatures on the design of incen-
tivizing mechanisms based on MAB. In [7], the authors
study a basic class of mechanism design for procurement
auctions, where the sellers provide varying prices to com-
pete for the buyers. They prove the proposed budget fea-
sible mechanisms are truthful and computational efficient,
especially having an approximation ratio of two compared
with the optimal. In [8], authors combine the procurement
auction and multi-armed bandits to design a posted price
mechanism, which achieves near-optimal utility of the re-
questers in the crowdsourcing tasks. They apply a regret
minimization method to determine the proper incentive
and prove the average regret of the mechanism approaches
zero asymptotically. In [9], the authors provide monetary
rewards to the users of sharing bikes who are willing to
choose alternate picking or returning stations based on
regret minimization. In [11], authors focus on the cold start
problem in the rental platforms, which provides incentives
to motivate users to deviate from their regular choices to
explore some choices with rare ratings to avoid the vicious
cycle of wasting viable choices. In [13], the authors con-
struct a bipartite graph and determine the allocation of the
crowdsourcing tasks by finding the match between various
tasks and the workers, who have different expertise and in-
terests. In [14], authors study the incentivizing mechanisms
for a special case of MAB to achieve the maximum utility of
E-bike repositioning with the user cooperation, but the work
is not extended to the generalized MAB problems. In [33], a
reinforcement learning mechanism is proposed based on the
deep deterministic policy gradient algorithm by modeling
the problem as a Markov decision process. Spatial and
temporal features are used to predict the usage of sharing
bikes, which maintains a divide-and-conquer structure. In
[34], a deep reinforcement learning based incentive mech-
anism is proposed to determine the pricing strategy for
the parameter server and the optimal training strategies
for the edge nodes in the federated learning. It addresses
the challenges of unshared information and difficulties of
evaluating contributions by forming as a Stackelberg game.
However, all these works do not consider the scenarios that
if the users are assigned tasks with heterogenous difficulties,
they expect rewards accordingly depending on the efforts
they are going to make.



2.2 Multi-armed Bandits

Due to its importance of exemplifying the explo-
ration—exploitation tradeoff dilemma, there are plenty of
literature discussing various types of MAB problem. In [23],
the authors discuss the general MABwWK problem, which
considers the one or more limited resources consumed dur-
ing the learning process. However, every arm is accessible in
their scenario. In [24], the case of sleeping (i.e. unavailable)
bandits are jointly considered with the fairness constraints
in the application like wireless scheduling. In [25], the au-
thors intend to incentivize high quality content contributor
in user generated content platform. The number of arms can
increase via the process of exploring, and an incentivizing
mechanism with randomization is proposed to address the
issue of flooding contributions. In [26], authors take multi-
level feedbacks into consideration to address the web link
selection problem, which is formulated as a constrained
stochastic MAB problem. In [27], authors study contex-
tual multi-arm bandits with resource constraints to choose
advertisements or design dynamic pricing, where a regret
bound with square root of time horizon is derived. In [28],
authors focus on scenarios where the rewards of choosing
arms are binary instead of quantifiable or having natural
scale, achieving information-theoretically regret bound. In
[29], authors investigate stochastic and adversarial combi-
natorial MAB problems, and efficiently exploit the struc-
ture of the problem via the proposed algorithms under
different bandit feedbacks. In [35], a Lipschitz contextual
MAB problem is formulated to address the strategies of
advertising based on web search of users. The mechanism
derives online strategies of advertising with a guaranteed
performance bound based on the given side information
and the action chosen simultaneously. In [36], a non-linear
deep learning framework of contextual bandits tackles the
exploit-exploration trade-off by utilizing the connection
between inference time dropout and the weight sampling
from a Bayesian neural network. In [31], the authors
design a master algorithm which adaptively selects the
best algorithm among a set of base algorithm in bandit
settings with superior regret bound. However, the proposed
mechanism utilizes the same algorithm for each MAB in
our setting. The performance gaps are not caused by the
utilized algorithm itself but the intrinsic differences among
independent MABs. However, in these framework, only one
MAB is studied, and the available arms are all accessible to
the system. We propose k-MAB problem which considers
the scenarios of k independent MABs sharing the same
budget and needing to be addressed concurrently.

3 PRELIMINARY

3.1 Motivation

The previous works explore the distribution of user cost
or rewards to find the optimal incentivizing strategies.
Nevertheless, they assume each user or action has a pri-
vate and static cost for all the tasks. In fact, one’s cost is
affected by many external factors, such as weather con-
dition/walking distance (bike reposition problem)new re-
view ratings (housing rental), or the users’ interests about
the product. These factors could cause the cost to vary,
depending on how users perceive the task at a different
time. The cost may fluctuate substantially, leading to jitters
or even divergence while learning the cost distribution. If
we discriminate the tasks based on the efforts needed and
learn multiple cost distributions, the distributions can be
approximated more accurately towards the profiles of the
true cost at that states. Leveraging these context information
certainly helps the system make better decisions as illus-
trated by the following example.

1) Sharing Bike Repositioning. A muotivating example is
illustrated. Consider a bike-sharing system that incentivizes
users for bike rebalancing. Through marketing research and
survey, the company gains some prior knowledge about
the external factors with a major impact on user cost, e.g.,
{weather, walking distance}? After returning the bikes to a
different station, the user may have to walk extra distance
to her destination. In [9], the same incentive is provided to
all users regardless of the external factors. However, during
a raining day, it would be more difficult to motivate users
for repositioning, thus demanding a higher incentive from
the budget; when it is sunny, users are more willing to
cooperate and earn rewards, thus paying a lower incentive
being sufficient to avoid wasting the budget. Therefore,
by considering external factors and incentivizing users ac-
cordingly, the budget can be utilized more efficiently for
maximizing system utility.

There are some parallel works that assign workers to
perform heterogeneous tasks [12], [13], [15]. They assume
the users bid truthfully based on their cost and the system
assigns tasks considering the bidding prices and the skill
set of users. These problems are usually solved offline with
known cost distribution of users, aiming to find an optimal
bipartite matching between tasks and users. However, this
paper studies an ownline problem that the users do not
reveal their cost and the incentives are not fixed. Instead,
they are learned through distributing incentives and getting
response from the users.

The contextual information are not always available and
the levels of difficulties may not consistently be discrimi-
nated quantitatively. However, the studied users still belong
to different categories, where each category belongs to one
independent MAB system. In the traditional MAB problem,
the learner is faced up with one MAB system, i.e. all arms
are accessible and she can choose any arm in any iteration.
However, in many realistic settings, the learner is faced up
with multiple independent MAB systems, and she can only
make decisions within one of the MABs in each iteration.
These observations motivate us to propose and study the
k-MAB problem. The following two motivating examples
illustrate the potential applications of this new RL problem.

2) Multi-platform Advertising. Nowadays, there are many
giant IT companies in charge of multiple platforms simul-
taneously which can be used for advertising. Vice versa,
one new product, service, or movie needs to take advantage
of the multi-platform promotion to get the most exposure
in the debut. One virtual advertiser is in charge of multi-
ple platforms (e.g. blogs, video websites, news websites),
each of which has a certain group of users that can be
promoted with advertisements. She intends to advertise one
new product with restricted advertisement buget, without
knowledge of what and how users can be attracted to click
on the advertisement. Within one platform, advertisements
can be displayed at one of the banners (like arms in MAB)
consuming different amount of budget. The success of ad-
vertising is measured via the number of clicks, while one
click increases the utility by one. The advertiser aims to
achieve the maximum utility with certain budget, i.e. the
new product gets the most extensive promotion with fixed
advertising budget.

There are many challenges to fulfill this objective. First,
due to the stochastic patterns of incoming users, a random
platform is considered each time, i.e. with limited arms
to choose from. Second, the advertising actions to take
should jointly consider all platforms besides of the platform
being used by the incoming user. Third, the allocation of

2. Due to space limit, this paper does not attempt to come up with
an exhaustive list of external tactors for specific ap})lications. However,
the proposed mechanism would work with more factors once they are
determined from data analytics.



Three Independent
MABs

Fig. 1: An example of 3-MAB system.

budgets to any platform affects the utility achieved via other
platforms, which in turn affects the total utility achieved.
A natural idea is to push more advertisements to users
more likely to be attracted by the product while reduce the
advertisements displayed to the ones lacking of interests.

3) Multi-casino Gambling. The MAB problem is usually
exemplified in the example of gambling in a casino, where
the arms of various slot machine can be pushed to gain
potential rewards at the cost of bets. Similarly, one gambler
plays online gambling in multiple casinos simultaneously.
The game in each casino is modeled uniquely by a MAB,
i.e. the gambler stochastically gets some rewards while
putting some bets at a slot machine in each game. She
has no knowledge about the distribution of rewards at the
beginning. Since each game takes some time, the next game
starts randomly in one of the casinos for the gambler. Note
that, the acquired rewards can be put back for another
gambling. She aims to get the most money with certain
initial funds within the given time period. In this example,
the gambler needs to distribute her funds playing in each
casino based on the learned distributions of each game,
while the game in each casion is an independent MAB. Due
to the nature of gambling, the bet of each action can be
adjusted, and she can get more rewards with larger bets if
she wins. Thus, the bets she puts in one game may affect the
bets she can put in other games in the future. The optimal
strategy to play the multi-casino gambling to get the most
rewards is extremely challenging.

Note that, the gambling is just utilized here to better
illustrate the possible application of the studied novel prob-
lem, since gambling-like scenarios often take place in real-
istic settings. E.g. the clinical trails of vaccine or medication
need to investigate the effects of different treatments while
minimizing the patient or time lost [16]. The trail of one
kind of medication can be treated as one MAB while a
pharmaceutical company may need to test several poten-
tial medication simultaneously to find the best, which is
constrained by limited resources of the company. Especially
in face of a global pandemic like COVID-19, the investment
of the world-wide development of vaccine is like the multi-
casino gambling.

3.2 System Model

We first discuss about the user model. The users are treated
as a group instead of individuals in the system, whose
behavior as a whole is intended to be learned rather than
individual’s behaviors to protect privacy. At any time ¢,
random number of users arrive in the system, and the
system assigns an offer of task to the arriving user via the
trained mechanism. The posted price mechanism is adopted

here to reduce the time spent for task assignment, enhancing
the user experience. The user has only one chance to either
accept or decline the offer, and she only receives incentive if
she accepts the offer. Next, we formally define the proposed
k-MAB problem.

Definition 1. k-Multi-Armed Bandits (k-MAB). Each time, the
learner is randomly given one MAB from a set of k independent
MABs to play with, while consuming some budget corresponding
to the chosen arm. The objective is to get the maximum rewards
when the budget is depleted.

The proposed k-MAB problem is demonstrated via an
example of 3-MAB in Fig. 1. A classic illustration of MAB
problem is an octopus playing slot machines via its tenta-
cles, where each slot machine corresponds to a stochastic
reward of certain distribution waiting for exploring. As
shown in Fig. 1, three little octopuses denoted by different
colors represent three independent MABs. The giant octo-
pus can control the three little octopuses, hence playing
different MABs. The giant octopus can only play one of
the MABs at once consuming some budget, intending to
maximize its rewards when depleting the budget.

Note that, the general MAB problem is a special case of
the k-MAB problem for k = 1 and all the arms are accessible
to the system at any time. Since the budget spent for one of
the K MABs will inevitably affect the left budget spent for
the other £ — 1 MABs, henceforth affecting the total utility
achieved with the given budget, the solving of k-MAB is
extremely challenging. Therefore, we start with the special
case that these k MABs are sorted in an order of difficulties.
C is the spent budget for a user, and different C’s associated
with different incentivizing levels are the arms in the MAB
problem. The expected reward for an MAB denoted by ¢
with spent budget C'is equal to 7;(C'). If one MAB ¢ is more
difficult than the other MAB j, then with the same amount
of spent budget, the reward of ¢ is always no larger than the
reward of j. The k MABs are sorted in the ascending order
of the difficulty (i.e. i+1-th MAB is always more difficult
than the i-th MAB), which is shown in the following,

ri(C) > r;(C),Vi < 4,VC. 1)

We first discuss this special case and provide a performance
guaranteed solution via demonstrating its applications in
the sharing economy.

Definition 2. Task difficulty. Each level of difficulty is defined by
a point in the space of external factors.

In order to address the non-stationarity of users, the
external factors are utilized to depict different situations.
E.g. the tasks under different weather conditions are classi-
fied into different levels to be learned specifically. Including
more factors, the classified levels are more stationary in
the trade-off of fewer users in each level to be learned.
Therefore, the two main factors of weather and walking
distance are picked in the simulation. We may conduct
similar processes for multi-platform advertising to address
non-stationarity via market survey in advance.

With n external factors, the i-th factor has m; levels. The
total k levels of difficulty are represented as a product from
all the levels, k = [[i_, m;. E.g., {{raining, sunny}, {<
500m, > 500m}} for the factors of weather and walking
distance in bike-sharing systems (k = 4).

The system has certain budget to incentivize the users
to accomplish an objective, which consists of tasks with
varied levels of difficulty. When a user arrives, the system
determines the difficulty of completing the task according
to the current situation. For instance, on a raining day,
a station within 500m needs reposition. An incentive is
determined based on the cost distribution learned online at
that level. The user either accepts the offer if the incentive
is no less than her cost, or declines if it is deficient. Our



strategy is a posted price mechanism that ensures truthful-
ness by making the offered incentive independent of the
cost claimed by the user [17], [18]. Instead of building on
truthful bidding/auction mechanisms such as second-price
auction [19], the posted price mechanism is adopted here
due to: 1) users may not intend to reveal their intrinsic cost
due to privacy; 2) system handles incoming requests one by
one and an immediate decision is made; 3) if we were to
use auction, the system should maintain a time interval to
gather enough users, and establish interactive sessions for
the bidding process, which hurts the user experience.

Definition 3. k-level (incentivizing) system. Tasks have k levels
of difficulty. A user can conduct only one task at a certain level.
The cost in the system for the j-th user to finish the task at the

i-th level, C(i) is sorted in an ascending order, C(i) < C(i) <

< C). n; is the number of users that perform the tasks at
the i-th level. The difficulties of the tasks are also arranged in an
ascending order, i.e. the (i + 1)-th level is more difficult than the
1-th level.

According to Definition 3, we naturally assume that the
cost in level ¢ + 1 is larger than the cost in level ¢ for the
same position j in the sorted list,

C <™ VjiandV1<i<k— 1. )
Definition 4. Utility. The summation of the number of tasks
completed by the users in each level via the incentivizing mecha-
nism.

According to the above definition, utility is equal to
the number of users willing to accept the offers if users
accepting the offers are obligated to complete the tasks.
In order to assure this, a reputation system may be built
to measure the reliability of the users. Users with low
reputation are barely considered to receive any more offers
in the future. The construction of the reputation system is
beyond the scope of this work. Note that, the extreme case
where users are unable to fulfill the assigned tasks due to
personal issues is not considered in the paper.

Definition 5. Budget feasibility. With a total budget B, B; is
the portion to be assigned to the i-th level. Their sum should be

within the total budget, Zle B; < B, and for any i, the total
incentives provided by any mechanism to the i-th level should not
exceed B;. A
The system has sulfficient participants, n; > B;/ CY) for
each level, to make sure that all the budgets are utilized.
The number of participants is finite; otherwise, it would be
a trivial problem since we can simply assign the minimum
incentive to each user but still find enough participants.

4 MECHANISM AND ANALYSIS

The goal is to design a truthful, budget-feasible mechanism
that achieves a constant approximation ratio to the optimal
solution. There are two strategies of assigning incentives.
Definition 6. OPT-VAR. The optimal solution which achieves
the maximum utility for the k-level system by providing varied
incentives to each user.
Definition 7. OPT-FIX. The optimal solution which achieves
the maximum utility for the k-level system by providing fixed
incentives to each user at the same level.

We discuss how OPT-VAR and OPT-FIX are achieved in
the following lemmas.
Lemma 1. OPT-VAR is achieved by sorting the cost of all users
in an ascending order and providing incentives in the sorted order
until the budget is exhausted.

Proof. Prove by contradiction. Assume a budget-feasible
solution that achieves larger utility, but the cost does not
follow the sorted order, i.e., there must exist one user with

lower cost who is not chosen, but the one with higher
cost has been chosen. Then there is always a solution that
maintains the utility and budget feasibility by switching the
user of higher cost with the one of lower cost (that are not
chosen), which still follows the sorted order of the cost. It is
an obvious contradiction to the assumption, so the lemma
is proved. O

Lemma 2. OPT-FIX can be achieved by providing the fixed

incentive qu) to the first g; users in the i-th level, where q;
is the largest number such that C < ]j Vi<i<k.

Proof. For any 1 < j < ¢, since C](-i) < C(Ef), providing
C(gf) ensures that the first ¢; users would accept the task.
Meanwhile, Céf)
feasible.
Optimality can be proved by contradiction as well.
Assume OPT-FIX is larger than the utility achieved by
this mechanism, there must be at least one ¢; > ¢; such

that C’ q{ < B;. However, g; is the largest number

satlsfymg C,h < B 24 for budget feasibility, thereby causing
a contradiction. The lemma is proved. O

- ¢; < B; makes the mechanism budget-

The derivation of B; is one of the main contributions
of this work, which is discussed in Theorem 2. For the
same level of difficulty, OPT-FIX provides fixed amount
of incentives. It is certainly not as efficient as OPT-VAR
since the incentives provided may exceed the actual cost of
users. Therefore, the utility of OPT-FIX cannot surpass OPT-
VAR. However, OPT-VAR requires all the cost to be known,
so more suitable for planning offline. Most platforms take
streaming requests and make decisions online. To this end,
we pursue fixed incentive as an online approach and find the
ratio between OPT-FIX to OPT-VAR for the k-level system®.
Budget assignment among all k levels is a difficult problem
since the cost distribution on each level is unknown. To
start, consider an arbitrary budget assignment below.
Theorem 1. For the k-level system, OPT-VAR < 2k - OPT-FIX,
ie. I*(k) < 2k - 1U(k), for any distribution of user cost with
arbitrary budget assignment of B; for any 1 < i < k. I*(k)
and 1(k) are the utility of OPT-VAR and OPT-FIX for the k-level
system respectively.

Proof. We prove this theorem by mathematical induction.
Base case: The work of [7] has proved this base case when
k =1 (only one level of difficulty).
Inductive step: For k > 1, assume that I*(k) < 2k-[(k) holds,
we want to prove that I*(k+ 1) < 2(k+1) - I(k + 1) also
holds, where in addition to the k levels, one new level is
added with a total of (k + 1) levels in the system.

The difference between [*(k + 1) and {*(k) is denoted
as Al* = 1*(k 4+ 1) — I* (k). Rewrite this into, I*(k + 1) =

I*(k) + Al*. To prove I*(k + 1) < 2(k+1) - I(k + 1), it is

sufficient to prove that both 1): 1* (k) < 2k - I(k + 1) and 2)
Al* <2-1(k+1) hold.

1) We prove [*(k) < 2k - I(k + 1). Introducing the new
(k 4 1)-th level means more options that users can choose
from (i.e., higher chances for the incentives to get accepted).
Compared with the k level system, the new k + 1-th level is
added to the k + 1 level system. If the assigned budget to
the k+1-th level is set to 0, the found optimal solution is the
same as the optimal solution found for the k level system.
Hence, the utility of (k + 1)-level system is at least as good
as the k level: (k) < I(k + 1). Plug in this into baseline
assumption [*(k) < 2k - I(k), then I*(k) < 2k -l(k+1) is
proved.

3. For simplicity, OPT-VAR and OPT-FIX also stand for utility
achieved by the mechanisms henceforth.
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Fig. 2: Cost of users in the incentivizing system when k = 2
(a) level 1 tasks (b) level 2 tasks. Task # = 1 means the 1st
task of level 1, with its incentive of C’{l) provided by OPT-
VAR. The area of the rectangular bar for each task is the
budget required to complete that task and their sum equals
to the total budget B} or B3.

2) We prove Al* < 2-[(k+1). The sketch is to apply Eq.
(2), which implies that the cost in the (k+1)-th level is larger
than the k-th level for the same position j in the sorted
list. Since the cost is relatively higher at (k + 1)-th level,
the number of tasks that can be successfully performed is
no greater than that from level &, i.e. [, (k + 1) < [;(k).
Similarly, for k levels, [} (k) < [} (k) and [*(k) = Zz LU (),
from which it can be derived that [} (k) < # That is, the
tasks that can be achieved at the k-th level are no greater
than the average number of tasks achieved at each level,
because the k-th level is the most difficult. Then from the
upper bound of Al*, the second condition is proved as,

l*](f) <2.(k)<2-U(k+1). (3)

Both 1) and 2) are proved so the ratio of 2k is proved. [

A <1 (k4 1) < T5(k) <

Theorem 1 states that an arbitrary budget assignment
among all the levels can still achieve a bounded ratio of
2k proportional to fixed k. The next question is to what
extent OPT-FIX can achieve compared to OPT-VAR (con-
stant approximation ratio). To find such ratio, we assume
an optimal budget assignment is given such that running
this assignment the budget will be fully utilized at each
level without causing an overall budget-infeasibility. We
start with the special case of £ = 2 and extend it into the
general case. The cost of level 1 and level 2 tasks are sorted
as, C’( C(l) . < 07(111 and 0(2) < 0(2 07(122).
The total budget is B in which By is reserved for the level 1
tasks and B> for the level 2 tasks (B = B+ B3). The budget
assigned by OPT-VAR are B} and B3 (B = B} + B3). The
total number of the tasks assigned by OPT-VAR is denoted
by ¥, where [ and [5 are the numbers of level 1 and level 2
tasks respectively (I* = [} + [3)*. Similarly, OPT-FIX assigns
[ tasks in total, where [ = [; + 5. In the following, we prove
that the ratio of OPT-VAR and OPT-FIX is bounded by 2.
Lemma 3. When k = 2, OPT-VAR < 2 - OPT-FIX for any

distribution of user cost if By > ll Cl(*1)2, l2 Cl(f/)z, and

B+ By < B. There are always such él and Bg satzsfymg these
constraints simultaneously. 7 (¢ = 1, 2) denotes half of the tasks
determined by OPT-VAR.

Proof. The proof is illustrated with the help of Fig. 2, in
which (a) and (b) show sorted lists of tasks vs. their ascend-
ing cost using OPT-VAR. We focus on level 1 and the same

4. We omit the (k) notation here for clarity since we refer to the k-
level system hereafter.
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Fig. 3: Counterexample: cost distribution violating the 2 — €
approximation bound.

princi;))le follows for level 2. Connecting the costs from C’fl)
to C’l(; results the cost curve in blue. Because of adequate

user participation, the sum of all the rectangular bars can be
closely approximated by the integral of the cost curve (the
area beneath 1t)

If By =+ C’ ( ; OPT-FIX can provide incentive C’l <2
to all first I} / 2 users in level 1. Its budget is represented by
the area in red (Fig. 2 (a)). Because of 4 is the mid-point,

the area of the red and green rectangles are the same. Thus,
by flipping the red into the green area, it is easy to see that

B = % . Cl(%)? < By, and the utilities [y achieved by B;

via the OPT-FIX mechanism satisfies [; = % Similarly, for
level 2, if By = %2 : Cl(; )2, the utilities I3 achieved by By
via OPT-FIX satisfies Iy = 2 and By < Bj. Thus, [; =

for ¢ = 1, 2. The relation holds for both concave and convex
curves since it only relies on the first derivative of the curve

(monotonically increasing), but not the second derivative.
When B; and B are chosen as above, B1+ By < B} +B* =

B and this budget -feasible mechanism infers, [; +1s = 1 +
Lemma 3 can be conveniently extended for the general
case of k as discussed in the next theorem.

Theorem 2. For the incentivizing system of k levels,

OPT-VAR < 2 - OPT-FIX for any distribution of user cost if
B; > %+ l Cl( + o and Ef 1 Bi < B. There are always such B;
satlsfyzng these constraints simultaneously.

Proof. According to Lemma 3,
l*

I o
> — - « > —
B> % O, =1> 2

)

For budget feasibility, B; should satisfy Zle B; < B and,

2§:Zl>z :>z>f (5)
Such B; always exists by simply setting B; = % -C (Z)/ for
any ¢. The relations in Fig. 2 still hold for any level i of the
k-level system,
k
<Bf = B, < B/ = > Bi<B. (6)

=1

O(l)

/2

O

Theorem 3. For any k-level system and € > 0, there is always a
distribution of user cost such that OPT-VAR > (2—e)-OPT-FIX.
Proof. For € > 1, the theorem obviously holds since
OPT-VAR > OPT-FIX due to the inefficient use of budget of
OPT-FIX. For 0 < € < 1, we prove by contradiction. Assume
there exists such e that OPT-VAR < (2 — ¢) - OPT-FIX, i.e.



1>

FIX should reach % l to sat1sfy budget feasibility (I = ) The
increment of Al over [ should satisfy, thus the 1ncrement Al

of OPT-FIX beyond 7 L should at least satisfy,

rr rr rr € .
> >t L __°<
[HAL> o = AL > P T . @)
For any given 0 < € < 1, 2(27 is a positive number (<
0.5). Since this relation should hold for any distribution of
costs, we can construct the following distribution of a k-

level system,

an 2_6) A (8)
072339:,\%199—1, )

where n; is the total number of users participating in the
level ¢ tasks, x is an adjustable parameter to determine
the distribution of costs. The cost distribution of level k is
depicted by the blue curve in Fig. 3. The OPT-VAR for this
distribution of costs can maintain [*, by adjusting 7.

Al, is the increment of [; of OPT FIX. Since Al =

k—
Z Al; + Aly, and (7),

=1

A —1= Al > 1.

ZAZ <an

A shown in Flg 3 we proved in Theorem 2 that the
budget corresponding to the red shadow area can be cov-
ered by the green shadow area. In order to cover the budget
required by %” + Aly, OPT-FIX needs the extra budget B kE)
denoted by the yellow shadow area, and the remained
budget of B; besides of the green shadow area is BZ(R)
denoted by the black shadow area in the figure. The total
remained budget of the whole system is B(f?),

(10)

k-1
B®™ <> B+ B,

(11)
1=1 &
Since Bf < I - O%) <17 -2, B <% .z, and I* = poLs
the upper bound of the remained budget is,
B < ( Zz x+— r<lI (12)
Meanwhile, the extra Budget needed should satisfy,
B > Clf), - Al > ), (13)
Let x be any number s.t. 0 < x < C' 5)2/1* thus,
BB <"z < Cl(g/)Q < B!P). (14)

BW < B ,(CE) means that the remained budget of the whole
k-level incentivizing system is not larger than the extra

budget needed in order to increase I;, by Aly. B < B,(CE>
means that the OPT-FIX is not budget-feasible, thus such
OPT-FIX does not exist for this constructed distribution of
costs. This leads to the contradiction of the assumption
that there exists an 0 < € < 1 such that OPT-VAR <
(2 — €) - OPT-FIX for any distribution of costs. Therefore,
it is proved that Ve > 0, there is always a distributions of
users’ costs such that OPT-VAR > (2 — ¢€) - OPT-FIX. The
ratio 2 in Theorem 2 is a tight bound. O

5 Kk-LEVEL INCENTIVIZING MECHANISM

We implement OPT-FIX under the framework of multi-
armed bandit (MAB). In MAB, the learner pulls an arm
each time and receives a stochastic reward. To maximize the
reward, she needs to exploit the best arm, and meanwhile,
explore other potentially optimal arms. We map the MAB
framework to the k-level incentivizing system. Here, the
goal is to learn users’ cost distributions by minimizing
the regret, which is the difference between the expected
and actual utility from a chosen incentive [20], [21]. By
dynamically adjusting the budget assignment according to
learned cost profiles, we want to minimize the regrets across
all the levels. The mechanism is described below.

Users randomly arrive at the system one at a time.
Based on the external factors under the current setting, the
incoming user is dispatched to a desired difficulty level
i. For example, repositioning the bike to a station with
shortage at 500m distance in a sunny day. The system
distributes incentive v; to the user according to the current
cost distribution at the i-th level (discussed next). The user
compares the incentive with her private cost and responds
either “accept” or “decline” to the system. The system then
updates the cost distribution for this level based on the
response; the proportion of budgets assigned to each level is
adjusted according to the new cost distribution. These steps
are repeated until the budget is depleted. Specifically, the

incentive v(*) for the incoming request in level i is,

v = argmax mln{— Pi(v) -ni}. (15)
el <v<old
v is a discrete variable in the range of C’mm and CI(,QX, which

are the minimum and maximum incentives allowed in level
i. Bi is the number of tasks that can be completed with
budget B; by running with incentive v. n; is the number of
users performing level i tasks. P;(v) is the probability that
the randomly arriving user accepts the level ¢ task for the
incentive v according to the learned distribution for level
i. Pi(v) - m; is the expected number of users who would
accept the tasks given incentive v at level ¢. The minimum
of the two numbers is the actual number of tasks that can
be completed given v and the system searches for incentive
v that maximizes the number of tasks being accepted.

The number of users willing to accept the offers in
each levels are estimated via the Line 14 in Algorithm 1.
Sort these levels in an ascending order, and incentivizing
users accordingly derives the required budget for each level.
Repeat this process until the OPT-VAR is found when B
is exhausted. Based on OPT-VAR, the [} can be derived,
further determining B;’s.

Finding the optimal budget assignment for the maxi-
mum utility turns out to be difficult (at least in the NP
category). For computational efficiency, we pursue the di-
rection of approximation derivations and use them as a
guideline for the learning mechamsm Theorem 2 states
that by assigning budget B; = C(Z to level ¢, the
2-approximation ratio is achleved ¥ is found by sorting
incentives in an ascending order, and providing incentives
in that order until the overall budget B is exhausted. Since
the learned distributions of users’ cost vary over time, B; is
updated accordingly at each level . To fully utilize B, B; is
scaled by the factor of § = B/ Zle B;. The mechanism is
summarized in Algorithm 1 and evaluated next.

6 MECHANISMS FOR K-MAB

In Section 4 and 5, we solve the k-MAB problem with the
known k levels of difficulty requiring the satisfied condition
of Eq. (1). The k-level online incentivizing mechanism with



Algorithm 1: k-level online incentivizing mecha-
nism
1 Input: # of levels k, total budge B, number of users

n; for level 4, min and max allowed incentive C’mm

and Cr(na)x for level 4, incentive increment Av, set of
incoming users U.

2 Output: Incentive p(i) for incoming users at level <.
35 0,8 < 0,N < 0,14 0,1; ¢ 0,¥i, ]

4 forVu el do

5 Determine the level i that u belongs to

6 Or(lfm ( 1) : AU, v.]

7 v(’) + argmax min{Z5 P (’UJ(Z)> n;}

cjnﬁggvjbkc(" vj

8 if S, + v(D < B, then

9 Provide v( ) to u, and collect her response 7,
(o ()Y P (4(8) )y Tu— P (D)

10 P, (v\)=P;(v\"))+ N1
NP« NP 41

11 < 1l+4+ry l; < l; + 17, //Update utility

12 if r, = 1 then

13 L S; + S; +v® //The total used budget

1 (i)<—ni( P = P(o\"), Vi,

15 Sort v;” in an ascending order getting sequence
1%
16 whileS<B,&V7é¢do
17 Extract level ¢ and order j from V; //Finding
l*
18 1fS—|—n§)J(z < B then
19 LS<—S+nl)§),lj<—l*+n) Ve
VAV
20 B; % . Cl(;f)/w Vi //According to Theorem 1

n | B« B/YY B;Bi« B -8, Vi=12,... .k
22 U+ U\ u //Remove u, and process the next
user

guaranteed performance bound 2 compared with the opti-
mal is proposed and proved. In this section, the generalized
k-MAB problem without the prerequisite of the known
difficulty is studied, and a mechanism named CMUE-UCB
is proposed to address this general case. The contextual
bandits algorithms may not address our problem. No con-
textual information is available when the k-MAB problem
is addressed. Instead, k independent MABs are learned
separately via the user feedbacks from different MABs.

The removal of the condition of known difficulty level of
the k MAB system (i.e. Eq. (1)) brings more challenges. The
proofs of Theorem 1, 2, and 3 all depend on the existing
of Eq. (1), i.e. the k¥ known MABs can be strictly sorted
according to their difficulty. By knowing Eq. (1), it is assured
that the rewards of providing the same incentive (arm)
to users of more difficult MABs can never be larger than
the rewards of easier MABs, which ensures the existing of
theoretical performance bounds. For the generalized k-MAB
problem without known levels of difficulty, utilizing the
previous mechanism may lead to the failure of finding the
optimal arm or getting stuck in some sub-optimal MABs,
which wastes the budget significantly. These observations
motivate us to propose new mechanisms to solve the gen-
eralized k-MAB problem.

To illustrate the problem and the mechanism clearly, the

k-MAB is studied with the example of the multi-platform
advertising mentioned in Section 3. An advertiser needs
to realize the utmost promotion of a product via serv-
ing advertisements in multiple platforms (MABs) with a
given budget. Each platform has different banners (arms)
charging different amount of money, which have different
distributions of the possibility that the user will click on
the advertisement via the banner. The advertiser only pays
certain money if the user of the platform clicks on the
advertisement [30].

The choice of banner in each platform is a MAB problem,
and the k independent platforms form a k-MAB problem.
The i-th platform is denoted by ¢, which has a known
number of n; users. The optimal advertising banner (arm)
v determined for an incoming user should jointly consider
the budget B and the click-through possibility P(v, ). > The
choice of the more expensive banner results in the fewer
number of the served advertisement with given budget
while likely (not necessarily) larger possibility that the
user will click on the advertisement. Note that the limited
number of available users n; of the platform (MAB) i
prevents the advertiser from always choosing the cheapest
banner, otherwise, the advertising will fail without attract-
ing enough users to click on within the given period. B /v
represents the allowed number of advertisements served by
exhausting the budget; P(v,i) - n; represents the number
of users clicking on the advertisment. For given v and i,
the smaller one of B/v and P(v,i) - n;) determines the
actually realized utility (i.e. the number of the clicks of the
advertisement). The objective is to find the optimal banner
v and the platform ¢ based on the current knowledge of
P(v,1), which realizes the maximal utility. The problem is
formulated as following.

v is determined first by solving arg max min{ %,

(16)

P(v,i)-
n;}, which derives a utility function of 4. Finding the plat-
form ¢ corresponding to the maximal utility tells the kind
of users that should be advertised. Solving Eq. (16) gives
the optimal solution based on the current knowledge of
the cost distribution. However, always choosing the banner
according to the solution of P1 may not help the system
achieve the best performance for two reasons:

1) Exploitation-and-Exploration: At the beginning, the
probability P;(v) of the user in platform ¢ clicking on the
advertisement is unknown to the advertiser, ® which needs
to be updated based on the user response r, using the
following formula,

B
P1 :max{arg max min{—, P(v
2 v v

Ty — Pz't(v)
NP1
t denotes the time, which increases by one with one in-

coming user. N represents the number of users that have

been served with advertisements. For each platform, the
(4)

17)

?

PI*i(0) = P(v) +

banner v; ' and the maximum utility {;(4) that platform ¢
can achieve are determined in the following equations,
i B
vl( ) = arg max mln{ ,Pi(v) - n;}, (18)
o <vscii
. . (B
lt(z):mm{v( P(vl()) ni}. (19)

l

5. We use P(v,1) instead of P;(v) here to emphasize that ¢ is also a
variable affecting the probability.

6. P(v,1) is denoted as P;(v) hereafter for conciseness.
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Fig. 4: Determination of the optimal banner based on utility
and efficiency (a) Banner determined by utility function (b)
Banner determined by efficiency in case of inadequate users.

Chmin and Cpax represent the cheapest and the most expen-
sive banners in platform i. With the growing knowledge of
P;(v), the optimal solution found based on current knowl-
edge may not be the global optimal solution. In order to
explore the potential more rewarding banners, some sub-
optimal banners in the current stage should also be consid-
ered. The Upper Confidence Bound (UCB) can quantify the
horizon of the exploration and sub-optimality gaps, which
overcomes the limitation of the strategies only based on
exploitation of current knowledge. The UCB depicts the
extent of the uncertainty, which shows the extent of the
deviation from the mean payoffs [,(7) of one arm based
on the plausible possibility, which can be derived by cal-
culating the UCB regret [8]. Combining the mean payoffs
together with the UCB, the proposed algorithm determines
the next platform that is served with the advertisement via
the following formula,

. Int
arg zmax(lt(z) + a\/;(i)%

where a is a positive user input parameter determining
the contribution of the mean payoffs and the UCB, i.e. the
emphasis on exploitation or exploration. M, (i) denotes the
times of the advertisements having been served to the users
in platform ¢ at time ¢. If @ is larger, then the advertiser is
willing to try more sub-optimal banners to find the potential
optimal; while smaller a means the advertiser tends to
exploit the current knowledge more.

2) Inadequate Users: Only finding the appropriate banner
according to Eq. (20) may fail in the realistic settings, since
sometimes there is inadequate number of users in platform
1. If the curves of B/v and P;(v) - n; have an intersection

within the range of (C @

(20)

i C’,(,fa)x) as shown in Fig. 4 (a), then
Eq. (18) can find the optimal banner for platform 7. The
yellow shadow area denotes the utility that can be achieved,
and I;(i) is the peak of the area which corresponds to the
maximal utility that can be achieved for platform i. If the
two curves do not have any intersection as shown in Fig. 4
(b), then there are inadequate number of users to be adver-
tised, and the condition PZ-(CI(YQX) -n; < B/ C), is satisfied.
In this case the platforms with inadequate users can not
compete with other platforms with abundant users since the
values of their utility functions are lower. This may result
in inefficient exploration of those minor platforms, although
the users of those platforms may be more enthusiastic about
the advertisement and have larger probability P;(v) to click
on the advertisement with the same v compared with other
major platforms. In order to maximize the utility, another
mechanism based on the efficiency of the advertisement is

proposed to provide a way to explore those users of minor
platforms,

, P,
véz) = argmax U), (21)
c<vscll) Y
P
ei(i) = % (22)

P;(v)/v is the probability of the users’ clicks in platform i
per unit cost of the advertisement, which represents the effi-
ciency of serving the advertisement to the users of platform
1. Higher efficiency of serving the advertisement means less
money spent to increase the number of advertisement clicks
by one, thus higher promotion of the product with given

budget. vt finds the banner with the highest efficiency,
and e; () is the maximal efficiency that can be achieved for
platform 4. As shown in Fig. 4 (b), the red dashed line is
tangent to the curve of P;(v) - n;, and the tangent point

is the banner v{” with the highest efficiency. Apparently,
the blue dashed line intersects with the curve at the banner
with the highest utility, however, its efficiency is smaller

than véi). Combining the efficiency together with the UCB,

another mechanism to determine the next platform to serve
advertisement is determined as following,

Int

argmax(e;(¢) + b —), 23

gmax(e(i) ) (23)
Since (i) and e;(7) have different metrics, the user input
parameter is set to another positive number b. Eq. (23) can
find the platform and the banner with the highest efficiency,
providing a feasible way to take advantage of those users in
minor platforms which have inadequate users.

The mechanisms based on Eq. (20) and Eq. (23) have
different advantages: Eq. (20) finds the platform considering
the scales of platforms while Eq. (23) determines the banner
based on the efficiency. Only utilizing Eq. (20) may decrease
the utility due to waste of budget, while only applying Eq.
(23) may lead to the delay even failure of the completion of
the advertising within given period. Therefore, the mech-
anism named Combinatorial Utility and Efficiency Upper
Confidence Bound Algorithm (CUE-UCB) is proposed to
take advantages of both proposed mechanism.

Int
arg max(;(i) + a -

— ), with Prob. «;
% Mt(z) )

A=

Int

argmax(e; (i) + b ,with Prob. 1 — a.
« is a user-input parameter determining which metrics is
utilized more in the finding of the next banner to place
the advertisement. When a new user of platform ¢ arrives,
with a probability o, the utility related metrics is chosen to
determine the platform A, to serve the next advertisement.
If i = A;, then the user will be advertised using the banner
vl(l) ; otherwise she will not be advertised. Similarly, the new
user of platform ¢ will be considered with probability 1 — «
using the efficiency related metrics. If ¢ = A;, then the
user will be advertised using the banner vél) ; otherwise she
will not be advertised. The proposed CUE-UCB algorithm
is summarized in Algorithm 2.

Time complexity. No matter which metrics is chosen, the
time complexity to recall function Eq. (18) or Eq. (21) is
O(m), where m is the total number of banners of all k
platforms. Eq. (20) and Eq. (23) are both in the order of
O(k), which is also O(m) since k < m. The algorithm will



Algorithm 2: Combinatorial Utility and Efficiency
Upper Confidence Bound Algorithm (CUE-UCB)

1 Input: Number of MABs k, total budget B,
probability o, UCB parameters a and b, number of
users n; in each MAB platform i, set of banners

{v](-i)}, set of incoming users U, .
Output: Banner v to serve the advertisement.
My(i) « L,ND < 1t < 1, Bi(0) - 0, ¥, j

N

3
4 forVueldo
5 | f+ rand(1)
6 if f < o then
7 forl1 <i<kdo
8 () eargmaxmm{ (Z),P(U§z))~ni}
e
9 lt(i)ernln{ (i),P(vl()) nl}
10 Ay + arg max(lt( i)+a ln(t)) Vi
1 ifu e Ay then
12 Use banner vl(At) to advertise, and collect
her response 7,
Ay Ay ru—P; (A
13 P(Ul( ))<—P‘(’Ul( ))+$+1)
1 N N L1 My(Ay)
M(A) + 1Lt t 11
15 if r, = 1 then
16 L B+ B — vl(At)
17 efse
18 L Do not serve the advertisement for «
19 efse
20 forl <i<kdo
: O
21 ) = arg max Pl((j) )
e vj
2 er(i) =2 (Z( )
23 Ay + arg max(et(i) +b J\}‘:é) ), Vi
24 ifue A tlhen
25 Use banner véAt) to advertise, and collect
her response 7,
(Ar) (Ae)y  ru=Pi(e*)
26 P;(ve™") «+ Py(ve )+W
27 N N 1, My(As)
My(A) +1,t—t+1
28 if r, = 1 then
29 L B+ B — véAt)
30 efse
31 L Do not serve the advertisement for

be executed once for each user, thus O(n) times for all n
users of all the platforms. Therefore, the time complexity of
the algorithm is O(mn).

Definition 6. Regret. The expected utility of mechanism M is
denoted by U (M, B) for a fixed budget B. The expected regret of
M is given by Ry (B) = U(M*,B) — U(M, B), where M*
is the optimal mechanism achieving the maximum utility among
all mechanisms. Ry (B) is briefly denoted as R(B) hereafter for
conciseness.

Theorem 4.The expected regret of mechanism CUE-UCB applied

for k-MAB problem is upper-bounded by,

n n 2
Z Al[z Z +1+7(10gn
A >0 t=1 "~ s=1 (A; —¢€)?
8log(B; 2
+Vrlogn+ )]+ 5 3 Mﬁgﬂ),
i JiP i <Pr 6]‘

. i T2 (P P(U(Z)) _ U(Z)*P,L*) C(z)
(Pz - Pl(v]( ))) + Z = L6 .jv(i)* ,U(m)m

J PL,j<P,L-* (24)

while the expected average regret w.r.t budget size B approaches
to 0 as B goes to infinity.

Proof. The regret of the algorithm mainly comes from two
parts. The first part Ry(B) comes from the choosing of
sub-optimal MABs due to the use of CUE-UCB algorithm;
the second part R2(B) comes from the rejected offers and
wasted budget through overpayment due to the chosen
fixed incentive for all the users in the same MAB. R(DB)
can be denoted as,

R(B) = Ry(B) + Ry(B).

The regret can be decoupled into these two parts because
these two are induced by completely different schemes: the
exploration of sub-optimal MABs in the process of finding
the optimal MAB, and the fixed price incentivizing mech-
anism to treat the users as a whole instead of individuals.
Meanwhile, these two are also all the reasons contributing
to the regret of CUE-UCB apparently. We derive these two
regrets separately in the following.

Part I. This part follows the classical proof of UCB related
regret. If we treat each MAB as a unique bandit, the proof
of UCB of MAB can be utilized to derive the regret where k
MABs form a new MAB altogether. W.L.O.G, the 1-st MAB
is set to be the optimal MAB with the largest expected
reward. The unit regret of choosing suboptimal MAB i is

defined as,
A 010

ny n;

(25)

(26)

The unit regret is the expected difference between the
utility increment of the chosen MAB and the optimal MAB
for every action. Ri(B) = ) ;a,50QiE(Ti(n)), where
E(T;(n)) = > I{A; = i} is the expected number
of times that ¢-th MAB is chosen by action A; after n
actions having been taken. Based on the Chernoff-Hoeffding
concentration inequality of n independent 1-subgaussian
\/21og()) < 4, where
p = > 14 Xi/n, the upper bound of the reward of each
MAB can be estimated with good confidence. Then the
procedures of estimating the number of times E(T;(n)) that
UCB of i-th MAB larger than the 1st MAB, can be utilized
as [32], since different MABs can be treated as different
independent random variables. According to the results in
[32], the regret of the first part is,

random variables Xy, i.e. P(u >

14-——= .
)+ +(A276)2

(logn + \/wlognJrl

27)

where n is the total number of users across all kK MABs, ¢ is
a small constant determining the confidence width.

Part 1I. The regret of the second part is mainly due to
rejected offers and the overpayment to the users. Recall that



a fixed incentive calculated via CUE-UCB is offered to all the
users in the same MAB without differentiating individuals.
Therefore, if the incentive is lower than anticipated reward,
offers will be rejected; vice versa, if the incentive is higher
than anticipation, some budgets are wasted due to overpay-
ment. In [8], a similar fixed price incentivizing mechanism
is proposed based on Eq. (18). Since this equation is the only
reason causing the regret Ro(B) for CUE-UCB and the same
regret in [8], the results in [8] can be extended here. The
unit reward of the bandit j in i-th MAB is defined as,

(28)

Fj(z) — min {T’ pl.(v(_z))}7

J
g T
based on which the regret between bandit j and the optimal
bandit (denoted by 1 W.L.O.G) for i-th MAB is,
0 = Fi — FY. (29)
According to Theorem 2 in [8], the upper bound of the
regret of this part is equal to,

Ry(B) < Z( Z

2
i §iP; j<Pf 5_; ) 3
(1) T (PZJ Pl(vj ) v ) Cvmin
P’L(vg ))+ ' Z 6 - @)= + p(@)=’
j:P; j<Pr
(30)

where the first and the second term originate from rejected

offers and wasted budget through overpayment. P; is

the probability of the user acceptance under the optimal
incentive in i-th MAB, while P, ; = Pi(vj(-l)). The detailed
derivation of this regret bound may be referred to [8].

Combining Part I and Part II together gives the upper
bound of the regret of the proposed mechanism applied for
solving k-MAB, which is,

2
ZAZ Zexp +1+m

:A; >0 t=1 s=1
+\/7rlogn+1)]+2( Z
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Based on the above upper bound of R(B), the only
part influenced by B is % Since B; < B, Vi,
it can be derived that R(B) is in the order of O(log(B)).
Therefore, the average regret of the proposed mechanism
w.rt budget size B tends to zero, ie. limp_, @ =
O(IOE(B)) —0.

(P = Pi(v;)) +

limp_ o0

O

7 SIMULATION

To evaluate the performance of the proposed mechanisms,
we conduct two separate simulations in case of the existing
and non-existing of levels of difficulties for k-MAB system.
Two different public datasets are utilized in the simulations.

Two applications are necessary here. The first applica-
tion of sharing E-bikes is the application used to verify

o
S
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X-Axis (km)
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o

Fig. 5: Analysis of dataset and survey (a) distribution of low-
energy E-bikes (b) average user cost under various external
factors.

250m  500m 750m  1000m  1500m  2000m
Sunny 0.27 0.51 0.74 1.04 1.77
Rainy  0.42 0.71 1.05 1.70
Snowy  0.58 1.11 1.69

TABLE 1: The average expected cost ($) of users considering
different weather conditions and traveling distances.

our k-level incentivizing mechanism in the sharing econ-
omy. Motivated by this work, we further propose k-MAB
problem, which requires another more suitable application.
Multi-platform advertising is the appropriate application
for testing the importance of k-MAB problem since each
platform can be treated as one MAB, which forms the k-
MAB system altogether.

7.1 Case Study of E-Bike Repositioning

To evaluate the case where k levels of difficulties exist, we
conduct a case study based on the popular E-bike sharing
system recently In addition to the re-balancing problem, E-
bikes require timely charging for sustainable system utility.
The existing solution dispatches maintenance crew to tra-
verse through all energy-demanding stations. To improve
efficiency, incentives can be given to users for helping
aggregate (low-energy) E-bikes towards some designated
stations. The process of determining such incentives directly
fits into the framework of the k-level system, where the
external factors of weather and (extra) walking distance
have impacts on the difficulty of the repositioning tasks.
Utility is defined as the number of E-bikes that have been
successfully repositioned under a fixed budget.

Due to its nascency and lack of public data for E-bike
sharing, we utilize the Mobike dataset® instead, assuming
the types of bikes have limited impact on the points of
interest. The dataset contains 3.2M bicycle trips from May,
10th to 24th in 2017, Beijing, China. Each trip consists of
(bike type, user id, order id, bike id, starting time, starting
location, ending location). To simulate energy status of E-bikes
, we establish an energy model based on the data crawled
from XQbike App (E-bike). By tracing each bike id with the
energy status, locations, the model can closely estimate the
residual energy of E-bikes. Note that, this transformation
may have limitations as our evaluation includes a subset
of all possible routes (without those longer rides using E-
bikes). Fig. 5 (a) presents a view of all the energy demand
points, with each pixel representing a 100 x 100m? grid in
Beijing. The analysis suggests that if E-bike sharing systems
are deployed in such large scale, the maintenance cost is
huge with more than 40% E-bikes waiting for recharging.

7. Bird scooter: https:/ /www.bird.co/
8. https:/ /biendata.com/competition/mobike
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Fig. 6: Performance comparison (a) learning cost distribu-
tions (b) utility and approximation bounds.

To acquire realistic cost distribution of users consid-
ering various external factors, we conduct a survey via
the Amazon Mechanical Turk (MTurk). The survey starts
with introductory questions about the participants’ famil-
iarity with the bike-sharing system, and follows by a ran-
dom combination from different {weather, walking distance}
to collect the minimum incentives for a repositioning task.
A total 385 respondents are received. The average cost is
shown in Table 1 and visualized in Fig. 5 (b). It shows that
cost in rainy/snowy days are about 2 and 3 times of the
cost in sunny days. The cost also grows faster regarding
walking distance, which validates that levels of difficulty
are indeed heterogenous from the users’ perspectives. Based
on the surveyed cost distributions, the user cost is randomly
sampled from the relevant distribution to simulate the run-
time situation in the experiment.

The cost distributions are continuously learned based
on users’ responses. The closer the learned distributions
approximate the private cost from users, the higher chances
for the incentivizing offers to get accepted, thus higher
overall utility. We use Kullback-Leibler (KL) divergence to
measure the difference between the two distributions as
used in [22]. Fig. 6 (a) depicts the evolution of KL divergence
as the number of users arrive from levels 1-6 vs. the “no-
difficulty” approach [9]. It is observed that our mechanism
converges much faster and provides a good estimation
of the true distribution with 500 users, whereas the no-
difficulty approach results 5 times larger KL-divergence
with 500 users. The curve also fluctuates due to the dynamic
repositioning demands at different stations, which makes it
hard to learn a combined distribution. By partitioning tasks
into various levels, cost distributions are learned efficiently.

Fig. 6 (b) compares the utility of our mechanism with
the no difficulty and equal assignment mechanisms. The latter
assigns equivalent budget to each level. Theoretical bounds
from Theorems 1, 2 and the optimal offline solution of OPT-
VAR are also plotted. Our mechanism achieves about 7
times utility compared to “no difficulty” and results an
actual 1.36 ratio to OPT-VAR in the evaluation. Introducing
more levels, the utility climbs up since our mechanism
could adaptively assign budgets among all the levels. In
contrast, “equal assignment” trends down since the difficult
levels demand more budgets while the easy levels have
surplus, thereby leading to inefficient use of the budget
among different levels. It converges to the bottom line
of “no difficulty” when more levels are treated equally.
The result validates substantial improvement of utility by
considering task difficulty as context information and high-
lights the importance of our mechanism that utilizes the
budget efficiently across all levels.

Table 2 further evaluates the budget and time required to
reach a utility objective of 1500 tasks. The average incentive
for each user is 1.16$ in our mechanism, 1.9 times of the
optimal solution; whereas no difficulty provides 2.968, 5
times of the optimal. Our mechanism also saves 54% time

no-diffi. equal asgmt. ours OPT-VAR"
budget ($) 4438 3729 1733 890"
incent. ($) 2.96 249 1.16 0.59*
time (min) 325 177 151 67"

TABLE 2: Budget and time required to achieve the utility
objective.
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No incentivizing No difficulty

o

11 11

Y-Axis (300m)
Y-Axis (300m)
Y-Axis (300m)

- W 01 N © =

3 >

9 9
7 7
5 5
3 3

# Low-energyE-bikes

1 1
2 4 6 2 4 6 2 4 6

X-Axis (300m) X-Axis (300m) X-Axis (300m)

() (b) (©

Fig. 7: Maintenance overhead in E-bike reposition (a) no
incentive (b) no difficulty (c) k-level difficulty.

o

to accomplish the utility objective much faster since the
provided incentives can reflect the true cost of users much
better, thereby receiving less “decline”.

Fig. 7 shows a running example if the maintenance
crew Visits the stations where the E-bikes are aggregated
by the incentivizing mechanisms. “No difficulty” mainly
repositions E-bikes in close distance, but fails to look further.
Our mechanism surpasses no difficulty by aggregating the
low-energy E-bikes at fewer stations. The maintenance crew
would travel 10.9, 9.5, and 4.3 km accordingly, with a sheer
55% and 61% mileage saving regarding no difficulty and no
incentive approaches.

7.2 Case Study of Mobile Advertisements Click

To evaluate the performance of the CUE-UCB mechanism
for the generalized k-MAB system, we utilize the public
dataset of clicks on the mobile advertisements collected by
Avazu °. This dataset contains 40M users’ traces of click on
mobile advertisements from Oct. 21st to 30th in 2014. 4M
traces are randomly sampled from the dataset to efficiently
reduce the scale of the data while also represent the typical
trends. Each trace consists of (click, hour, site_id, app_id,
device_ip, anonymized features) etc. To accommodate to the
scenario of k-MAB, each APP identified by the app_id is
considered as one MAB, each site in the APP identified by
the site_id is the banner, and each user is identified using
device_ip. However, the Avazu dataset does not include the
cost of serving the advertisement in each banner, so we use
synthetic data to generate the cost. In the reality, platforms
with higher volume of the flow of users usually charge
more for the advertising, i.e. the cost per advertisement is
positively related to the amount of users. However, if the
cost is set to be proportional to the user amount, platform A
charges 10 times compared with platform B is apparently
unreasonable. Therefore, the synthetic cost of each banner
based on the natural logarithm is generated as following,

v = (In(NUM_APP) + In(NUM_SITE) + §;)/d, (32)

where NUM_APP and NUM_SITE are the total number of
the appearance of APP (MAB) i and SITE (banner) j, ; is
a randomly generated number, d is an adjustable positive

9. https:/ /www.kaggle.com/c/avazu-ctr-prediction/data
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Fig. 8: Utility of different mechanisms (a) for the same
budget (b) for different budgets.

CUE-UCB Uti. Effi BP-UCB PD-BwK
KL-div. ($) 0.08 0.10 0.13 0.19 0.23
time (M) 0.63 059 0.69 0.38 0.47

TABLE 3: Budget and time required to achieve the utility
objective for different mechanisms (BP-UCB [8] and PD-
BwK [23] are benchmarks).

number. We summarize the number of appearance of all
APP and sites, and pick the top 10 APPs according to the
number as the 10 MABs (i.e. £ = 10). We also calculate
the Click-Through-Rate (CTR) for each site, which is the
number of clicks per impression, where the highest CTR is
found to be about 0.45. The found CTR is used as the intrin-
sic probability that the user will click on the advertisement,
based on which a statical model is generated to simulate the
user’s behavior.

When a user arrives, CUE-UCB algorithm determines
the best banner to place the advertisement, and the adver-
tisement will be served if the user is using that APP, and her
response is collected. o, a, b, d are set to be 0.2,1000, 10, 50,
and the budget is set to be 10000 $. The probability «
value achieving the highest utility is found in the range of
[0, 1] with an increment of 0.05. In order to make /,(7) and
et(i) comparable to their UCBs in scale, the a and b values
are chosen in the range of [500, 5000] and [10, 100] (ranges
determined by the ratios between the utility and UCB when
t = 10% and ¢t = 10°%) with an increment of 500 and 10,
which achieves the highest utility with other parameters
fixed. d is chosen to make the average incentive provided
in the simulation to be about 0.1 $ per user, referring to the
advertising cost on Youtube per click [37].

As shown in Fig. 8 (a), the utility (number of clicks
of advertisements) achieved using different algorithms is
compared between different algorithms. Our CUE-UCB al-
gorithm is compared with the benchmark algorithms BP-
UCB proposed in [8] and PD-BwK proposed in [23], the
“Uti.” only using utility function, and the “Effi.” only using
the efficiency algorithm. Note that BP-UCB and PD-BwK
can just handle the case of one MAB, which are adjusted
to treat all banners in different platforms as a whole in the
simulation. The simulation shows that CUE-UCB achieve
about 5.5 x 10% utility, which improves the utility by about
90% and 150% compared with the BP-UCB and PD-BwK.
Our algorithm treats different platforms separately, and
always serve the advertisement to the best banner in the
best platform, which avoids the waste of budget compared
with them. Meanwhile, only using the utility function or
efficiency function achieves lower utility since they either
choose many inefficient users or the scale of the chosen
platform is not enough.

Fig. 8 (b) compares the utility achieved for different bud-
gets varying from 5000% to 30000$. It can be observed that,
the increment of utility decreases as the budget increases,

since most of high efficient users have been served with
the advertisement, and the extra budget has to be used to
advertise less efficient users. The difference between CUE-
UCB and the benchmarks increases as the budget increases,
however, the percentage of the improvement decreases ac-
cordingly. The highest percentages of the improvement of
the utility are about 275% and 370% when budget=5000 $,
while the same percentages decrease to 41% and 59 % when
budget=30000 $, since the advantages of our mechanism
is diminished when the system has to choose more less-
efficient users.

We also evaluate the precision of the learned proba-
bility of each banner using KL-divergence, and also the
time needed to complete the advertising. The proposed
CUE-UCB mechanism achieves the minimal KL-divergence,
which is only about 42% and 34% of two benchmarks.
However, our mechanism needs about 65% more time to
finish the advertising since it may skip some incoming
users and choose to serve the advertisement for some more
efficient users. We believe the tradeoff of time is worthwhile
since the utility can increase up to 275% when the time
constraint is relaxed.

Note that, most of the mechanisms solving MAB can
not be used as benchmarks here since they may not be able
to address the case of MAB with Knapsacks nor to form a
fixed price incentivizing mechanism, which are both basic
requirements of this paper. Therefore, BP-UCB and PD-BwK
are utilized as two competitive state of the art benchmarks.

8 CONCLUSION

In this paper, we propose a new reinforcement learning
problem named k-MAB, and study the mechanism to ad-
dress the problem with and without the contextual informa-
tion of difficulties. Given levels of difficulties, we partition
the tasks into heterogeneous levels of difficulty based on
the external factors that may impact on users’ cost. We
formally analyze the ratios between assigning varied and
fixed incentives in different scenarios and design a mech-
anism to learn users’ cost distributions via minimizing the
regret. For more generalized k-MAB problem, we propose
CUE-UCB algorithm to jointly consider the utility function
and the efficiency of serving the advertisements. We present
two case study based on the E-bike sharing system and mo-
bile advertisements click using public datasets. The results
demonstrate dramatic improvement in utility and learning
by utilizing our mechanism compared with benchmarks.
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