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Abstract—Electric autonomous vehicles provide a promising
solution to the traffic congestion and air pollution problems
in future smart cities. Considering intensive energy consump-
tion, charging becomes of paramount importance to sustain the
operation of these systems. Motivated by the innovations in
renewable energy harvesting, we leverage solar energy to power
autonomous vehicles via charging stations and solar-harvesting
rooftops, and design a framework that optimizes the operation
of these systems from end to end. With a fixed budget, our
framework first optimizes the locations of charging stations based
on historical spatial-temporal solar energy distribution and usage
patterns, achieving (2+ε) factor to the optimal. Then a stochastic
algorithm is proposed to update the locations online to adapt to
any shift in the distribution. Based on the deployment, a strategy
is developed to assign energy requests in order to minimize
their traveling distance to stations while not depleting their
energy storage. Equipped with extra harvesting capability, we
also optimize route planning to achieve a reasonable balance
between energy consumed and harvested en-route. Our extensive
simulations demonstrate the algorithm can approach the optimal
solution within 10-15% approximation error, and improve the
operating range of vehicles by up to 2-3 times compared to other
competitive strategies.

Index Terms—Optimal scheduling, energy harvesting, vehicle
charging, polynomial-time approximation algorithm

I. INTRODUCTION

The future smart cities exemplify how computation and
information flow are coordinated between end devices and
infrastructure for automation. Transportation is one of the
driving impetus for this evolution as most of the metropolises
like Los Angles, Beijing and New Delhi suffer from per-
sistent traffic congestion, which remains as one of the ma-
jor contributors to air pollution. Studies found that traffic
congestion is responsible for 56 billion pounds of carbon
dioxide pollution [1] and this number keeps climbing. Electric
vehicles have been a green solution and their possession enjoys
a rapid growth recently. Meanwhile, the recent advance in
artificial intelligence makes it possible to learn from end-to-
end for autonomous driving [2], which rises as a promising, or
presumably, the ultimate solution to traffic congestion [3]. A
marriage of these two powerhouse technologies would reshape
the auto industry as major manufacturers like Ford, BMW and
Volve have already made their moves to go electrification with
autonomous designs.

Unfortunately, the relatively stagnant progress in battery
technology fails to catch up with the rising demands in
mileage and computation, especially the arrays of sensors
are mounted and commanded by power-hungry computing
units like GPUs on these battery-powered platforms for real-
time processing [2]. The data from sensors like cameras and
LiDARs are fused and processed by GPUs, which could
generate more than 12 GB of data each minute and consume

about 2.5 KWh [4]. With the intensive computations on-board
(consumes about 10% energy for the current Tesla Model 3),
a fully-charged autonomous vehicle (AV) is expected to last
much less than the standard mileage [6]. While energy-efficient
neural computation is still at its early stage [5], charging is of
paramount importance to promote AV as a first-class citizen
in the future smart cities. This pushes back on the service
provider to offer better coverage of charging stations, operation
management, guidance of route planning and deliver them as
a whole package to the users. Thus, a solution to the charging
problem should entail a holistic approach starting from the
charging stations, and assist the AVs with efficient algorithms
at the infrastructure backend for optimized decision making.

A. Retrospect: Solutions with the Main Power Grid

An immediate solution is to build more charging stations
to satisfy the emerging energy demands. For instance, Tesla
aims to make 99% of the US population within 150 miles
of a charging station. Yet, driving 3 hours for a charge is
obviously not a solution, let alone the mileage for return-
ing. So far, the cost of building and maintaining dedicated
charging stations still remains prohibitive for individual and
private business owners. Further, inappropriate selection of
locations and the dynamics of demand may lead to either
low utilization or congestion [7], [8]. These situations cause
highly unbalanced distribution of resources and ultimately
a loss to the service provider. To this end, existing works
focus on pricing/incentivizing strategies [7]–[9], placement of
charging stations [10]–[12], or energy saving from the user
perspective [13], [14]. Users are modeled as self-interested
agents to maximize the expected profits of selecting the
charging stations [7], [8]. A greedy algorithm is proposed to
maximize the charging demand [10]. The mutual interactions
among charging stations, drivers, traffic congestion and queu-
ing time are jointly considered in the placement of charging
stations [11]. A bi-level optimization model is proposed to
arrange the distribution of stations by maximizing the revenue
and minimizing the user dissatisfaction [12]. A neural network
is used to predict the driving behaviors which extends the
mileage by accommodating the controllers [13]. An automated
control system is proposed to manage power consumption,
improve the battery lifetime and driving range [14].

These strategies focus on the scenarios that the charging
stations are connected to the main power grid. Yet, the rapid
adoption of AVs would bring excessive load and instability to
the grid. With opportunities to generate energy off-the-grid,
in this paper, we pursue new directions to power the AVs by
renewable energy, such as the solar power. Ambient energy is
adequate to power self-sustainable wireless sensor networks as



shown in [15]. Among the ambient energy, solar is an ideal,
green source as they can be harvested for free after a one-time
investment. Its success for energy provisioning in distributed
systems has been proven in wireless sensor networks [17]–[19].
For AVs, it not only alleviates the load to the main power
grid [20], but also offers distributed charging opportunities
while people are at work. Fig. 1 demonstrates some existing
prototypes of this innovation. Charging stations installed with
large-size solar panels can serve multiple AVs simultaneously.
The platform can be made mobile and relocated to new
locations depending on the distributions of ambient energy or
emerging demands from users [25]. Similarly, equipped with
solar panels on the rooftop, AVs can harvest extra energy
anywhere during daytime.

(a) (b)

Fig. 1: Prototypes (a) mobile solar-powered charging sta-
tion [25] (b) car with solar rooftop from Toyota.

B. Contributions of this work

These innovations laid the foundations to power autonomous
vehicles with renewable energy in the future smart cities. Its
success should not only rely on hardware integration, but
also tackle a series of challenges during operation facing the
uncertainties in the ambient energy source and user demands.
Obviously, the locations of charging stations require careful
planning based on the cost profile of rental and daily operation.
They should also satisfy the dynamic distribution of charging
requests to avoid low utilization or congestion. With external
capabilities to harvest solar energy, the AVs can also jointly
plan their routes to avoid energy depletion en-route and merge
this capability into the entire energy supply chain for system-
wide optimization. A recent work [16] has developed a mecha-
nism to plan the route of solar-powered vehicles following the
strength of solar radiation. We further refine this approach and
integrate it with the optimization framework.

In particular, this paper aims to offer a full-stack solution by:
1) optimizing the locations of charging stations by considering
extra traveling distance to get charged and spatial-temporal
energy distribution of solar power; the historical distributions
are analyzed using machine learning algorithms to generate
predictions; 2) conducting operation management to establish
new stations for emerging demands and pruning the ones with
low utilization; 3) assigning the charging requests to different
stations based on the real-time energy status in order to,
avoid congestion and balance energy income/expenditure; 4)
planning routes of the AVs to achieve a balance between energy
consumed and harvested en-route with the solar-harvesting

rooftops. The contributions of this paper are summarized in
the following.
• We propose a framework to determine the optimal loca-

tions of charging stations that maximizes the energy out-
put while minimizing the driving distance to the charging
stations. Based on time series predictions from recurrent
neural networks [35], a (2 + ε)-approximation algorithm
is proposed.

• We formulate the charging assignment problem and de-
velop an efficient solution using dynamic programming,
based on the predicted solar income and waiting time of
users.

• We develop a route planning algorithm achieving a bal-
ance between energy consumed and harvested en-route,
given the potential capability to harvest solar from the
vehicle rooftop.

• Based on the real energy traces from [33], our exten-
sive simulations not only demonstrate the algorithm can
achieve an average of 30-50% savings compared to the
competitive algorithm [34], with 10-15% approximation
error, but also improve the operating range of the AV by
2-3 times.

The rest of the paper is organized as follows. Sec. II
presents the motivation and system overview. Sec. III studies
the deployment of solar-harvesting charging stations. Sec. IV
studies the assignment of charging requests. Sec. V discusses
the routing of AVs considering charging and harvesting energy.
Sec. VI evaluates the performance of the proposed framework
and Sec. VII concludes the paper.

II. PRELIMINARY

We motivate this study based on the data analytics of solar
data from NREL [27].

A. Motivation

From the energy measurements, we utilize the irradiance
formulaes in [23] to calculate output power from the solar
panel. For a period of one month, the output power of a
solar charging station is compared with the energy needed for
satisfying the dynamic charging requests as shown in Fig. 2.
The solar data is acquired in Aug. 2018 at El Paso, Texas.
The number of charging requests is based on the daily traffic
patterns obtained from [26]. We set (assume) a ratio of the
electric AVs to the total traffic volume, and apply a moderate-
size station equipped with 3-by-5-meter (i.e. 15 m2) solar panel
that generates electricity with 2.3 kW ·h, and stores the energy
into a battery with 21.6 kW · h capacity according to [25].
The measurements are based on two representative locations:
Location #1 in suburban area and #2 in downtown area. Fig.
2 shows the comparisons of the harvested solar energy vs.
the consumed energy with charging demands at two different
locations1. The residual energy is the net income of solar
energy after deducted from the energy used to charge the AVs.
Fig. 2 shows that there is sufficient solar energy in location

1We consider the worst case scenario that all the AVs in the sub-area are
requesting to get charged.



#1 but insufficient in location #2. There are two observations
from these preliminary results.
Observation 1. It is feasible for a moderate-size station to
satisfy the daily charging demands in most of the locations.
Observation 2. Energy imbalance still exists at some locations.
The additional demands should be re-routed to the neighboring
stations.
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Fig. 2: Solar income vs. energy consumed for charging at dif-
ferent locations (a) sufficient energy at loc. #1 (b) insufficient
energy at loc. #2.

Rooftop Charging. The new solar rooftop can harvest
150W according to a recent study from Hyundai [28]. Their
study reveals that the harvested energy can extend the mileage
by 3% at the speed of 48km/h (about 1.3 km additional
mileage) for the 2017 Hyundai IONIQ electric car at 11.5kW ·
h/100km. This indicates that for two routes with similar
distance, choosing the one with more abundant energy can
extend the mileage. However, different from [16], we argue
that if the additional distance traveled to another route is more
than 3%, it is not worthwhile changing the route even if the new
one enjoys more solar irradiance. This is because the energy
harvested will be offset by the additional distance traveled. Our
analysis reveals that the solar rooftops are useful especially
when the AVs are stationary during the working hours. The
harvested energy can extend the mileage by 10km, which
covers most of the short-distance commutes.

B. System Model

The system architecture is shown in Fig. 3. It takes historical
data of the spatial-temporal distribution of solar energy, usage
distribution of AVs and (short-term) energy predictions into
the frontend to determine the locations of charging stations.
A recurrent neural network [35] is utilized to forecast the
short-term energy income and charging requests. The algorithm
takes the prediction and optimizes decision making. During
operation, the system computes the following: 1) the locations
of the charging stations according to the variation of usage
patterns; 2) assignment of charging requests to appropriate
stations based on energy income and expenditure; 3) route
planning of AVs to optimize their energy expenditure.

We assume the system involves two major entities: service
provider and users (passengers). The service provider offers a
ride hailing service similar to Uber and Lyft, with the new
innovation of self-driving and solar power. To make a trip
request, users enter the destination and the system dispatches a
dedicated ride. We assume the AVs have Internet connections
with the infrastructure to report their real-time status such
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Fig. 3: System architecture.

TABLE I: List of Important Notations

Notation Definition
H Locations of charging stations
pj Center of the j-th cluster with energy requests
mj Number of requests in the j-th cluster
f Installation cost of one station
ni Number of charged AVs
ri Charging requests i
xi Location of requests i

d(i, j) Distance between location i and j
Ei Energy demand of request i
si Expected solar income at location i

as location, battery energy, solar energy income (via rooftop
sensors) and the infrastructure provides information of charging
stations, route planning to optimize the operation. The service
provider has an initial budget to allocate k charging stations in
a confined region, e.g., a start-up company with only a fixed
amount of investment who wants to optimize the operation of
the system. For simplicity, we assume the energy consumption
of the AVs is proportional to the mileage or traveling time, and
do not consider complex situations such as traffic congestions
in route planning. These factors can be always introduced as
additional weighted factors into the formulation at run-time.
Once the AV reports a charging request, or is about to request
one, the system collects such request into a pool for charging
assignment.

III. DEPLOYMENT OF CHARGING STATION

In this section, we first study the deployment of charging
stations. The goal is to ensure that the energy demand of AVs
can be satisfied at any time with moderate traveling distance
to the charging stations. We propose a mechanism with an
offline optimization of location selection, and stochastic online
adjustment for continuous adaptation to new demand patterns.
We summarize the important notations in Table I.

A. Charging Station Placement (Offline)

The deployment of charging stations is formulated as the
Charging Station Placement problem (CSP). Similar to gas
stations that are built at the road intersections, convenient
locations of charging stations can also increase the operating
range significantly without worrying about battery depletion.
Nowadays, in order to promote emission-free vehicles, charg-
ing stations have been built on university campuses, public
places like shopping malls [30]. However, few literature has
studied stations with extra solar-harvesting capabilities to sat-
isfy the rising energy demand in future smart cities. Existing
works have considered energy harvesting in wireless sensor



networks through solar-powered sensors [18] and hybrid energy
source [19], whereas those solutions cannot be readily applied
here due to their limited scale and the new application context
like user demands, vehicle mileage and route planning.

Specifically, the formulation of CSP should consider several
aspects: 1) the charging stations should be close to the locations
of energy requests, in order to reduce the distance traveled to
get charged; 2) for most of the energy requests, the charging
stations need to make sure at least one of them is reachable
to avoid battery depletion; 3) the charging stations should be
located in places with abundant solar energy.

Charging Request. To facilitate our analysis, the city is
divided into grids {xi}. The system gathers historical data
of energy requests based on their locations and amount. We
define the sum of the charging requests ri within the grid
xi as a parameter associated with the grid location, with its
magnitude representing the amount of energy demand in each
grid. Neighboring grids can be combined into an aggregated
region Rj , a location pj and the amount of energy request mj

are calculated as,

pj =

∑
i∈Rj

rixi∑
i∈Rj

ri
, (1)

mj =
∑
i∈Rj

ri (2)

Eq. (1) calculates the average position of all the grids weighted
by the number of requests, i.e., represented by the density of
demands denoted by pj , i.e., the location pj tends to be closer
to grids with more energy requests. This definition helps find
an optimal placement of the charging station. Eq. (2) calculates
the sum of energy requests in a region, denoted by mj , which
determines the number of charging stations near the region.
pj and mj together form a tuple Cj = (pj ,mj) of charging
requests, and these tuples for all the regions form a set of
charging requests C = {Cj}. The CSP is defined as follows.

Charging Station Placement (CSP): Given the set of
charging requests C from historical data gathered offline, find
a location set S, |S| = k, so that locations in S have sufficient
solar energy, and max{pi ∈ C, d(pi, q) : ∀q ∈ S, } is
minimized. The problem is defined as the following,

P1 :min{ max
pi∈C,q∈S

{d(pi, q)}}, (3)

Subject to

|S| = k (4)

E[GHI(s)] ≥ β,∀s ∈ S, (5)

where GHI is Global Horizontal Irradiance, and
E[GHI(s)] ≥ β makes sure the harvested solar energy
is larger than a lower threshold of β. CSP finds a group of
locations for charging stations, so that for any position in the
set of charging request S, there are always enough charging
stations near them to satisfy the energy demands and the
largest distance from any position to these charging stations
is minimized. Next, we prove the problem is NP-hard.

Theorem 1. CSP is NP-hard.

Proof: The problem can be reduced to the Facility Lo-
cation Problem (FLP). For given positions C, FLP seeks a
location set S, |S| = k so that maxpi∈C{minq∈S{d(pi, q)}} is
minimized. Considering the definitions of both CSP and FLP, if
mi, the number of charging stations needed, is set to 1 in CSP,
and relax the restrictions of the location set S with sufficient
solar energy, then the CSP is reduced to FLP. Since FLP is
NP-hard [31], CSP is also NP-hard.

B. (2 + ε)-factor Offline Algorithm

Since CSP is NP-hard, no algorithm can achieve optimality
in polynomial time unless P = NP . To this end, we pursue
the direction of approximation algorithm. The intuition is to
make sure the collection of charging stations covers as many
energy requests as possible with minimum traveling distance.
The algorithm is described below (Algorithm 1).

1) Preparation. We select a number of mi locations with the
largest expected solar energy from the neighborhood of
each location pi ∈ C. This new set of candidate locations
of charging stations is denoted by A.

2) Selection. We first pick an arbitrary location in A to
deploy the first charging station, denoted by H1. Then
we assign all the remaining locations to the cluster of
B1 associated with H1. Next, we find the location in
B1 furthest from H1, and designate it as the second
charging station H2. For each location u in the original
B1, if d(u,H2) ≤ d(u,H1), then u is re-assigned to
B2 associated with H2; otherwise, u stays in its original
cluster B1.

3) Adjustment. For j clusters {B1, B2, . . . , Bj} associated
with charging stations {H1, H2, . . . ,Hj}, choose a lo-
cation u from the charging stations which is the furthest
from its assigned charging station, and locate the (j+1)-
th charging station Hj+1 at location u. For any station u
in the original clusters, if d(u,Hj+1) ≤ d(u,Hq), where
Hq is u’s charging station assigned originally, then u is
re-assigned to the charging station Hj+1; otherwise, u
stays in with Bq . This procedure is continued until a
total of k charging stations have been established.

The time complexity is analyzed below. For the first step
of finding candidate locations, the time requirement for m
candidate locations is O(m). For determining cluster head,
each one has complexity of O(m) and there are k in total.
Therefore, the total complexity for our algorithm is O(km).
Theorem 2 (Approximation Bound). Algorithm 1 has (2+ε)
approximation ratio to the optimal solution.

Proof: Denote the maximal distance of this solution as
SOL. We first prove that, for this case, the solution found by
the algorithm is no greater than 2h, where h is defined as the
largest distance from any node u, to its assigned cluster head
Hj among all k clusters. SOL is the distance between two
nodes, e.g., A and B in a cluster, SOL = d(A,B). For the
cluster head Hi associated with A and B, d(Hi, A) ≤ h and
d(Hi, B) ≤ h. Therefore, according to the triangle inequality,
d(A,B) ≤ d(Hi, A) + d(Hi, B), and SOL ≤ 2h.



Algorithm 1: (2 + ε)-Charging Station Placement Al-
gorithm (Offline)

1 Input: Set of charging requests C = {Ci : Ci = (pi,mi)},
distribution of solar energy, neighborhood radius r, set of
candidates locations A ← φ, # of stations to establish k.

2 Output: locations of charging stations H.
3 for i = 1, 2, . . . , |C| do
4 A ← A

⋃
{mi largest solar-rich locations in r range of pi}

5 Pick any point v ∈ A; H1 ← v, B1 ← A \ {v}; j = 1.
6 while j ≤ k − 1 do
7 Hj+1 ← argmax

∀1≤i≤j,∀u∈Bi

d(u,Hi), Bj+1 ← φ.

8 ∀1 ≤ i ≤ j, ∀u ∈ Bi

9 if d(u,Hj+1) ≤ d(u,Hi) then
10 Bj+1 ← Bj+1

⋃
{u}, Bi ← Bi \ {u}, j ← j + 1.

11 j ← j + 1
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Fig. 4: Example of solving CSP when k = 3.

Next, we prove that any two nodes in {H1, H2, . . . ,Hk, u}
have distance greater than or equal to h, i.e., u is not assigned
to another cluster head yet. It implies that d(u,Hi) ≥ h. Since
u is not picked while looking for H2, d(u,H1) ≤ d(H1, H2).
Since h ≤ d(u,H1), h ≤ d(H1, H2). By applying similar
procedure in the process of determining H3, it is proved that
h ≤ d(H1, H3) and h ≤ d(H2, H3). By continuing this process
for all k cluster heads, we conclude that the distance between
any two heads in {H1, H2, H3, . . . ,Hk} is at least h.

Suppose the optimal solution has the largest distance denoted
by OPT . Since {H1, . . . ,Hk, u} exists, according to the
pigeonhole principle, there is at least one cluster in the optimal
solution containing two or more nodes in the above set. Since it
has been proved that the distance between any two nodes in the
set is at least h, OPT ≥ h. With SOL ≤ 2h, SOL ≤ 2·OPT .

For candidate locations in the neighborhood within range
of r > 0, the distance between any two locations A and B
is no greater than d(A,B) + 2r. The new solution SOL∗ is
no greater than SOL + 2r, SOL∗ ≤ 2(OPT + r). Since r
is much smaller than the OPT , the approximation bound is
SOL∗ ≤ (2 + ε)OPT .

Example. An example of CSP is demonstrated in Fig. 4
when k = 3. (xi, 5) stands for a charging request located at
xi with a number of 5 times. (pj , 100) is the 100 aggregated
charging requests in a region, represented by the center pj as
a weighted average of energy requests. As shown by Fig. 4,
3 charging stations are picked in the order of the arrows from

some candidate locations with sufficient solar energy. Then the
requests are assigned to their closest charging stations.

C. Update Charging Stations (Online)

Near-optimal solutions can be achieved offline if the succes-
sive occurrences of charging requests are known. A method is
to use machine learning for prediction. Then Alg. 1 is applied
to derive the initial deployment of the charging stations that can
“best” accommodate the future energy income and demands.

Nevertheless, the future occurrence could exhibit significant
deviation from the historical data. For example, the spatial-
temporal variation of energy is subject to the seasonal change
of sun’s angle towards earth surface. The building obstructions
and natural surroundings may have different impact on the
energy captured based on the actual locations and the time
of the year. Similarly, the patterns of utilization may undergo
substantial variation because of traffic, construction and plan-
ning. As a result, to adapt the varying nature of these factors,
new charging stations should be added while the ones with
low utilization should be removed or relocated. Based on the
offline solutions on the historical data, we propose a stochastic
online algorithm to adapt to these changes.

Adding. Whenever a charging request ri is received, its
position xi is recorded. There are two criteria of determining
whether a new charging station should be established at loca-
tion xi or not: 1) There is no charging station within distance
d from xi, where d = E[|h − h′|], ∀h, h′ ∈ H (the average
distance between any two stations). 2) With probability 1/f
(or equal to one if f < 1), the location xi is chosen as the
new location, where f is the cost of establishing one charging
station. When these two criteria are satisfied, a new charging
station is introduced at location xi.

Pruning. A station contains multiple charging piles and each
one maintains a counter of ni for the number of AVs served per
day. The expected number of vehicles served is e, and the cost
of removing one charging pile is f (originated from removing
the previous installation). We mandate a charging pile to be
removed stochastically with probability max(0, 1/f −ni/ef).
If there is no AV served at the charging pile during that
day, it is removed with probability 1/f ; if ni ≥ e (i.e. the
served requests are more than expectation), then the removal
probability is 0; if 0 < ni < e, the probability is between 0 to
1/f . The online algorithm is summarized in Algorithm 2.

IV. ASSIGNMENT OF CHARGING REQUESTS

After the charging stations have been established, the run-
time performance of the system necessitates coordination be-
tween the charging infrastructure and the AVs; otherwise,
the AVs would simply swarm into the closest stations that
ultimately causes energy depletion at some popular locations.
To tackle this problem, we design an assignment algorithm
to re-route some of the requests and achieve the following
objectives: 1) the traveling cost of AVs to the assigned charging
stations is minimized; 2) no station depletes its energy storage.

For optimal scheduling, the system does not make online
decisions that take streaming requests for immediate response.
Instead, it plans ahead to forecast the number of n charging



Algorithm 2: Station Adjustment Algorithm (Online)
1 Input: Set of charging requests R, set of charging stations H, the

installation cost f of one station, number of served requests ni at
i-th station during a day, expected number of served requests e.

2 Output: New set of charging stations H.
3 for ∀ri ∈ R do
4 if d(ri, h) > E[|h− h′‖], ∀h, h′ ∈ H then
5 z ← random number in [0, 1]
6 if z ≤ 1/f then
7 H ← H

⋃
{xi}

8 for Hj ∈ H do
9 z ← random number in [0, 1]

10 if z ≤ max(0, 1/f − ni/ef) then
11 H ← H \ {Hj}

requests that would be sent from the AVs depending on their
energy status. For example, if the destination is still far but the
battery is running low, the system could provide an estimate of
when the charging request would be sent and form a number
of pending requests. This way, the charging assignment can
be conducted more effectively for a better solution. Thus, we
consider an offline setting of the assignment problem.

Charging Assignment Problem (CAP): The goal is to
assign n charging requests (of energy demands Ei) to m
stations. With the predicted energy income sj (from which the
charging consumptions have been subtracted), assigning which
request to which station is governed by the following aspects.
First, from the perspective of the passengers who receive the
charging service, the extra mileage traveled from xi to the
designated station hj is a dominant factor of user satisfaction.
It is proportional to the distance measure of L − d(i, j), in
which L is a large number to make L − d(i, j) positive. In
other words, a larger d(i, j) results a lower satisfaction and
vice versa. The objective is to maximize user satisfaction of
all n requests. Meanwhile, we should guarantee that the total
energy requests assigned to a station do not exceed the expected
energy income. The problem is formalized below.

P2 : max

m∑
j=1

n∑
i=1

dijyij (6)

Subject to n∑
i=1

Eijyij ≤ sj , (7)

m∑
j=1

yij = 1, (8)

where yij is a 0-1 decision variable of whether a request is
assigned to station yj . Eq. (6) maximizes user satisfaction in
terms of distance. Eq. (7) ensures the energy demand assigned
to each station is bounded by the harvested energy. Eq. (8)
states that each charging request is assigned to one station.

A. Solution by Dynamic Programming

CAP can be solved in polynomial time by converting it to
the Knapsack problem [29], which finds the most valuable
items to fit into a fixed-size knapsack. Here, the problem has

a difference since the user satisfaction for each request would
change during assignment. If a request has not been assigned
to any station yet, the satisfaction is dij for being assigned to
station j; if the request has been assigned to another station
l, the satisfaction becomes dij − dil. Note that the former
assignment of some requests may be altered by the process of
another station. Since the satisfaction is updated to dij−dil, the
request is less likely to be assigned to j, and if this happens,
it means the new assignment can always increase the total
satisfaction.

We leverage dynamic programming to solve the problem,
which efficiently trades computational time with memory
space. The key step is to comp up with the transition from
step i to i+ 1 assuming we know the optimal solution at step
i. The optimal assignment with the maximum satisfaction for
the first i charging requests with s harvested energy is denoted
by F (i, s). F (0, s) = 0 (0 ≤ s ≤ sj) is set as the initial value.
F (i, s) is updated of i and s towards the number of requests
n and maximum harvestable energy S,

F (i+ 1, s) =

{
F (i, s), Ei+1 > s

max(F (i, s), F (i, s− Ei+1) + di+1,l), Ei+1 ≤ s.

The dynamic programming method runs in O(sin) time
with O(sin) space that finds the optimal solution of each
assignment. During the process, O(m) is needed for updating
the assignment for each station, with a total of m times.
Therefore, the time complexity is O(snm)+O(m2). Since the
Knapsack solution provides an (α+ 1)-approximation [21] to
the assignment problem, with dynamic programming (α = 1),
the approximation ratio is 2 compared to optimal assignments.

V. ENERGY-AWARE ROUTING OF AV

With the additional capabilities to harvest solar power, we
also integrate energy-aware route planning for AVs into the
optimization framework. Recall that the AVs have two ways
to replenish their battery energy either through the charging
station or from the solar rooftop. The previous charging station
placement and request assignment guarantee the regular energy
replenishment is satisfied. In this section, with additional
capabilities to harvest solar energy anywhere from the rooftop,
we consider energy-aware route planning for AVs.

Energy-aware Route Planning. The AVs can select a
path with more solar exposure if the candidate paths are
identical in traveling time (energy consumption). Hence, route
planning should consider factors of: 1) energy harvested and
consumed from a chosen path, 2) residual energy of the AV.
Here, we consider the general case that energy consumption
is proportional to the traveling time. The AV travels from
the source to destination in a grid-based coordinate system
following different paths. Our objective is to maximize the
residual energy of the AV by selecting a path P , while making
sure the residual energy is above a lower threshold.

The problem is analogous to the Traveling Salesman Prob-
lem with Profits, a variant of the classic Traveling Salesman
Problem (TSP). TSP aims to find the shortest path traversing a
set of locations exactly once [22]. In addition to the traveling



cost, a reward pi is associated with each vertex. The problem
finds the shortest path with the maximum profits. These two
objectives are indeed conflicting, since the first objective urges
the salesman to travel as less as possible while the second
one encourages him to traverse as many vertices as possible to
maximize the profits collected. In close analogy, the profits
here are the solar energy enroute to be harvested and the
objective is to minimize the energy consumed (assuming it is
proportional to traveling distance) while maximizing the solar
energy collected.

Greedy Algorithm. We propose a greedy algorithm. Con-
sider the map with grids {xij} and the mileage measured in
Manhattan distance. According to the forecast, each grid xij
has a potential solar energy income stij during time period
t. At xij , the AV can move to four adjacent grids {xi−1,j ,
xi+1,j , xi,j−1, xi,j+1} in the next step, that either increases
or decreases the distance by one unit towards the destination.
Based on the solar energy at these locations, profits can be
calculated. Take xi−1,j for example, assume that moving to
this location would decrease the distance to the destination by
1, then the profit is pi−1,j = sti−1,j − 1. In each step, the AV
moves to the grid with the largest profit if the energy constraint
is not violated. Before taking this move, the AV also makes sure
that there is at least one charging station within the operating
range of the AV before energy depletion. If a location has the
largest profit but fails to satisfy the previous condition, it is not
chosen. The above process is repeated until the AV reaches the
destination.

VI. PERFORMANCE EVALUATIONS

The goal of performance evaluations is to integrate existing
datasets as a basis to validate the designs of the algorithms. In
particular, we first evaluate the prediction of the machine learn-
ing algorithm on time series data. Based on these predictions,
we evaluate the deployment strategies of charging stations,
assignment algorithms and operating range of the AVs, and
compare them with competitive algorithms from the previous
literatures or existing approaches.

A. Simulation Setup

We acquire solar irradiance data from SolarAnywhere [33],
which provides data for the continental U.S. with a resolution
of 10 km. A field of 200km×200km in the metropolitan area
of El Paso, TX is chosen in our simulation. 5 years (2009-2014)
hourly solar irradiance data are extracted from the dataset and
used in our prediction models, among which the first 3 years
are used as the training data and the next 2 years are used as
testing. As a proof of concept, we do not consider the complex
traffic/road conditions, but set the source and destinations of
the AVs in a 2D plane measured in Manhattan distance. The
system schedules all the AVs to move at a constant speed of
60km/h to avoid congestions and the fully-charged battery can
support a total mileage of 200km (as we set 10-30% lower
than normal mileage of electrical vehicles to account for the
intensive computations on-board).

Each station has a number of charging piles that can host
a total 10 vehicles at the same time if the residual energy

is enough for the station. The charging process takes 60
minutes from empty to full. Due to the resolution of the data
source, we divide the field into grids of equal length (1km).
Similar to Section II, we analyze the traffic data from [26] to
obtain the volume at different locations. The patterns exhibit a
drastic spatial-temporal difference, based on which, we apply
a conversion ratio (set to 10%) of the number of AVs in
that traffic volume. This ratio can be adjusted according to
the number of possessions of AVs. We average the simulation
results over 100 runs. The prediction engine is developed with
Tensorflow and tested on Nvidia Tesla P100 GPU in HPC and
the backend algorithms are developed in Python and MATLAB.
B. Comparison of Prediction Schemes

The accuracy of energy prediction determines the perfor-
mance of the backend algorithms. To this end, we first eval-
uate different machine learning algorithms. Solar energy and
demand represent a perfect example of time series study at
each geographical locations. The objective is: given the solar
energy income or the number of the charging requests for
the previous one or few hours, predict these values for the
next time periods. We apply the Long Short Term Memory
(LSTM) network [35] to forecast the future values. LSTM
is the state-of-the-art recurrent neural network that surpasses
traditional structures. Each LSTM cell consists of a set of
gates to remember and forget relevant information towards
minimizing the loss objective. In our evaluation, a total of
64 LSTM cells are stacked as the hidden layer and the depth
of the network is extended by adding the number of layers.
The hourly solar income data and charging requests data in
one week are fed into the prediction engine for training. The
hourly data in the next two consecutive days are used for
testing, which compares the predicted hourly data with the
actual values.

Fig. 5 shows the results of predictions for solar energy
and charging requests. For two very different solar income
distribution (sunny and cloudy), LSTM can predict with a high
accuracy. The highest solar income mainly comes from 10 a.m.
to 18 p.m.. For the charging requests, they mainly concentrate
on the working hours and reduce rapidly. There are strong
demands of charging from 7 a.m to 10 a.m. and 17 p.m to
20 p.m., however the solar income encounters a deficit due
to sunset. This situation has been captured by the proposed
framework as discussed in the next subsections.

To show different methods of prediction, statistical methods
of Moving Average (MA), and Auto-Regressive Integrated
Moving Average (ARIMA) [36] are compared with LSTM.
Root Mean Square Error (RMSE) is applied here as the metric
to measure the distance between predicted and actual values,

RMSE(z∗) =
√
E
[
(z∗ − z)2

]
. (9)

z∗ is the predicted value. z is the actual value and E
[
(z∗−z)2

]
is the expectation of the square error. An LSTM with 2 hidden
layers are evaluated with different backward time steps (back).
MA is evaluated with different window sizes (wz), and ARIMA
of 0 degree of differencing is evaluated with different lag order
(p). LSTM with 3 backward hours has the overall minimum



RMSE of 27.5 compared with the other two schemes, which
improves 29.1 % and 26.9 % compared with the best prediction
performance of MA (wz=1) and ARIMA (p=6).

(a) (b)
Fig. 5: Actual solar power and charging requests vs. prediction
(a) solar power (b) charging requests.

TABLE II: Comparison of average RMSE of different predic-
tion algorithms for solar income and charging requests (back -
# backward time steps in hrs, wz - time window, p - lag order,
d - degree of differencing.)

LSTM back=24 back=12 back=6 back=3 back=1

2-layer 45.7 41.5 35.8 27.5∗ 32.1

MA wz=1 wz=2 wz=3 wz=4 wz=5

38.8 43.2 46.5 51.0 55.8

ARIMA p=2 p=4 p=6 p=8 p=10

d=0 50.3 45.2 37.6 42.5 47.3

C. Comparison of Charging Station Deployment

Next, we compare the proposed offline and stochastic online
charging station placement algorithms with the optimal result.
To provide more insights, we also benchmark our algorithm
with the classic online k-means clustering algorithm [34], in
the similar application context. As a demonstration, we plot
the energy distributions and the results in an 25×25km2 area,
with the charging requests depending the fractional volume of
the traffic at that time. The brighter color indicates higher solar
energy depending on the terrains and surroundings.

Fig. 6 (a) shows the placement of charging stations based on
historical solar distributions. The triangles and dots represent
the charging stations and requests respectively, where the
same color means that they are served at the same station.
Instead of being simply placed at the energy-richest places,
the stations tend to be more scattered to accommodate the
charging requests from different locations while ensuring there
are sufficient harvestable energy.

Once there is a pattern change in the distributions of traffic
volume or energy distribution, the stochastic online algorithm
can capture such shift and continuously update the deployments
as demonstrated in Fig. 6 (b). 4 new charging stations are
added to the current group to satisfy the emerging new requests
around these areas because of the increase of demand. As a
validation of our algorithm designs, these new locations all
enjoy sufficient solar energy, thus can successfully handle the
additional demands.

Finally, we compare the performance of different mecha-
nisms of charging station deployment based on the metrics of
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Fig. 6: Comparison of offline and online station placement
mechanisms (a) offline placement (b) online placement. (Best
view in color)
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Fig. 7: Average traveling distance of AVs to get charged (a)
weekdays (b) weekends.

power generation, min-max traveling distance of the AVs, num-
ber of charging stations established and number of requests
fulfilled during the day. The optimal solution is derived if both
ambient energy profiles and charging requests are known in
advance. We also compare our algorithm with a competitive
online k-means clustering algorithm [34], which finds clusters
of comparable spatial extent in an online setting.

From Table III, we can see that the online algorithm achieves
the best performance as well as outperforms the offline algo-
rithm in all four criteria. This is because the offline algorithm
simply calculates the “optimal” solution based on historical
data, which may be outdated. The online algorithm can capture
such changes given that it generates the minimum number of
stations (by pruning the low-utilized ones) while achieving the
min-max traveling distance for requests served at the same
station. It also generates the maximum solar energy output for
higher energy storage and mitigate the impact from ambient
dynamics. Finally, compared with online k-means, the online
algorithm generates 63% more electricity, reduces the min-max
distance by 30%, saves the number of established stations by
37%, and increases the number of completed charing requests
by 74%. Our online algorithm are also close to the optimal
results by 10-15% off the optimal solution.

TABLE III: Comparison of different mechanisms of charging
station placement.

optimal∗ online k-means offline online

solar power(kW·h) 195.2 106.0 165.7 173.3
min-max dist.(km) 3.2 6.1 4.5 4.3
# stations 7.1 12.6 9.5 8.0
# completed req. 90.3 46.0 76.7 80.2

D. Comparison of Charging Assignment Strategies

The proposed Charging Assignment Algorithm (denoted by
CAA) jointly considers the energy status of charging stations
and the distributions of charging requests. An intuitive strategy
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Fig. 8: Operation range of AVs. (a) Under different densities
of charging station. (b) In different months across the year.

is to find the Nearest Neighboring (NN) station and fulfill the
charging requests. In this subsection, we compare CAA with
NN by measuring the average traveling distance for AVs in
order to get charged by the designated station.

Fig. 7 compares the two different strategies in weekdays and
weekends. Through the analysis of traffic flows, we find that
the traffic patterns are different for weekdays and weekends
(different rush hours). In the weekday as shown by Fig. 7
(a), during the rush hours (6-9 a.m., 5-7 p.m.), the average
traveling distance is the highest, since charging requests are
high during these hours but the harvested solar energy is not
enough. With the decline of charging requests and rising solar
radiations, the traveling distance decreases around the noon
time. The distance bottoms at about 3 a.m., during which the
charging requests are usually the lowest (bedtime). CAA can
save traveling distance from about 19% to 26% in weekday.
Note that NN does not lead to less traveling distance. If the
design follows the naive NN strategy, the tension between
the energy income and demand is pronounced. Thus, the AVs
would drain energy storage at some popular stations and push
the rest customers to other stations with more distance.

Fig. 7 (b) indicates a slight shift of the busy hours from
8-12 p.m., (more sporadic during the daytime with several
peaks in the afternoon). Even more than the weekdays, CAA
saves the traveling distance from 12% to 51%. We find that
CAA can save more traveling distance than NN during the
night. Note that the charging stations requires surplus for
nighttime operations, so is more likely to deplete its energy if
the assignment is improperly scheduled. The proposed strategy
can always result more energy storage by saving, thereby
improving the system robustness.

E. Operating Range of AVs
The operating range is a major concern severely affecting

the wide adoption and promotion of electric AVs. In this
subsection, we benchmark the proposed strategies against the
traditional approaches [10]–[12], [16] with/without renewable
energy and show additional benefits of cost savings.

We measure the operating range of AVs for different den-
sity of charging stations during different seasons across the
evaluation period. In Fig. 8(a), we compare the operating
range for the “none”, “solar rooftop”, “solar station” and
“both” schemes, which represent the AVs solely depend on
themselves, with solar-harvesting rooftop, with solar charging
stations, and integration of both, respectively. The range of AVs
equipped with solar rooftop enjoys an incremental improve-

ment (about 5%) compared with the traditional AVs, which
verifies our findings in Section II (about 3%). The extra 2%
improvement of operation range is actually benefited from our
energy-aware route planning scheme. The results also indicate
that the previous approach of [16] does not have astonishing
performance.

With low density of charging stations (lower than
1.6/(100km)2), the range is not significantly improved since
most of the AVs fail to reach a charging station before battery
depletion. However, it increases rapidly when the density is
above 2/(100km)2. We found that most of the charging requests
can reach the stations within 5km beyond this threshold,
which is only about 5 mins drive to get charged. Moreover,
solar rooftop further increases 10% operating range with solar
stations. It effectively compensates the extra miles for the
AVs to reach the charging station. Note that, if the station
density reaches 3/(100km)2, the operating range of AVs can
be extended for more than 3 times, which is quite promising
for large-scale applications in the future smart cities.

Due to the seasonal change of solar income, we also evaluate
the operation range across the year. Shown in Fig. 8(b), the
operating range is influenced by the climate. The simulation
is conducted at Jan., Apr., Jul., and Oct.. During any month,
“both” and “solar station” schemes perform better than single
“solar rooftop”, which achieve almost twice of the operating
range. While applying “both” scheme for all 4 considered
months, we find that the summer months achieve almost 20%
better performance than spring and fall, and even 30% better
than winter. Since “both” schemes utilizing the advantages of
both solar harvesting and charging at solar power stations, the
harvested energy sometimes plays a crucial role, since the extra
harvested energy fills the inevitable energy gap to reach the
charging stations.

VII. CONCLUSIONS

In this paper, we design and optimize a new energy provi-
sioning framework to power electrical autonomous vehicles in
the future smart cities. Our study starts from finding an opti-
mal placement of solar-powered charging stations for optimal
coverage and cost minimization for AVs. The strategy can be
adjusted online stochastically to adapt any shift in the new
energy/demand distributions. Based on the locations of charg-
ing stations, the charging requests are assigned to maximize
the satisfactions of users in terms of traveling distance under
the budget of solar energy income. For each trip request, the
framework schedules the optimal route for the AVs adaptively
based on energy consumed and harvested, along with the solar-
harvesting rooftop design. Finally, we demonstrate that the
proposed framework can extend the operating scope of AVs
and save energy depending on harvested solar energy.
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