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Abstract—Energy supply remains to be a major bottleneck in
Wireless Sensor Networks (WSNs). A self-sustainable network
operates without battery replacement. Recent efforts employ
multi-source energy harvesting to power sensors with ambient
energy. Meanwhile, wireless charging is considered in WSNs
as a reliable energy source. It motivates us to integrate both
fields of research to build a self-sustainable network and guar-
antee operation under any weather condition. We propose a
three-step solution to optimize this new framework. We first
solve the Sensor Composition Problem (SCP) to derive the
percentage of different types of sensors. Then we enable self-
sustainability by bringing energy harvesting storage to the field
for charging the Mobile Charger (MC). Next, we propose a 3-
factor approximation algorithm to schedule sensor charging and
energy replenishment of MC. Our extensive simulation results
demonstrate significant improvement of network lifetime and
reduction of network cost. The network lifetime can be extended
at least three times compared with traditional approaches and
the charging capability of MC increases at least 100%.

Index Terms—Multi-source energy harvesting, wireless charg-
ing, wireless sensor networks, energy self-sustainable

I. INTRODUCTION

The research of energy efficiency in wireless sensor net-
works (WSNs) has mainly focused on energy conservation
such as low-cost communication, duty cycling, adaptive con-
trol and MAC/routing protocols [1]–[3]. These studies improve
energy efficiency but yet to solve the fundamental problem of
energy provisioning. Sensors will deplete energy ultimately
and battery replacement is necessary but infeasible for large
networks. Energy harvesters can acquire energy from the
environment, e.g., solar, wind, vibration, thermal, and electro-
magnetic radiation [4]–[6], and made commensurate to sensor
size. Unfortunately, ambient source is dynamic, and constant
interruption of power supply is expected (e.g., solar harvesting
during cloudy/raining days). Thus, new solutions combine
multiple sources together to improve system robustness (e.g.,
solar-wind system [7]). However, under extreme weather con-
ditions, it may still suffer from energy shortage when none of
them are available. To this end, we introduce wireless charging
as a backup and reliable energy source [8], [9]. Due to limited
charging range, a Mobile Charger (MC) is usually employed
to approach the proximity of sensors for effective charging
[10].

Previous work studied energy efficiency for WSNs from
different network layers [11] to system/application level op-
timizations [12]. However, the success of these mechanisms
cannot escape from the fundamental problem of energy supply.
For energy harvesting, researchers developed low-cost solar
panels and wind turbines of compact sizes [7], [18], [19]. They
also utilized MCs for charging sensors wirelessly. Neverthe-
less, these systems are barely scalable since the MCs have to

visit each sensor one by one [13]. To overcome the drawbacks
of both approaches, in this paper, we combine multi-source
energy harvesting and wireless charging to realize energy
self-sustainability in large-scale WSNs that require continuous
sensing, coverage and reporting.

The main challenge is due to the inherent dynamics in
ambient energy. Solar and wind energy are both subject to
micro-climate variation that fluctuates rapidly due to spatial-
temporal factors. For instance, cloud movements, sunlight
angle, foliage shades, building obstructions, temperature and
humidity all have impacts on the harvested energy. During
rainy days, solar irradiance is limited; in hot and humid season,
wind could completely stop for days. Thus, it is critical for
the system to be cognizant of the spatial and temporal char-
acteristics of the weather, and plan sensing, data processing,
and communication accordingly. Energy-harvesting sensors
are still not enough to guarantee robustness because 1) none
of the energy sources may be available in case of extreme
weather, 2) nonuniform energy distribution may cause network
disruption. To this end, it is essential to provide a backup
energy source as wireless charging is employed to support
sensors for sensing and relaying data.

To make the system fully autonomous and self-sustainable,
the MC needs to replenish its own energy. Most of the previous
work redirects the MC back to the base station with connection
to the power grid [15]. However, such infrastructure could
be unavailable in ad-hoc applications such as wildlife and
pollution monitoring. To this end, we deploy a few devices
called Energy Harvesting Base Stations (EHBS) to harvest and
store enough energy with large device. When the MC depletes
its energy, it recharges its own battery at EHBS so the network
no longer relies on electricity from the power grid.

The new framework poses a series of new challenges. First,
how to determine the optimal combination of sensors har-
vesting different energy, regarding the energy profiles (called
sensor composition problem)? Second, where to deploy EHBS
to maximize energy output while minimizing moving cost
of the MC? Third, how to schedule activities of the MC
to respond charging requests and replenish its own battery
at EHBS? We build a suite of algorithms to answer these
questions in a systematic manner. First, we find that the sensor
composition problem can be solved optimally in polynomial
time by network flow [21]. Second, we propose an algorithm
that can partition sensing fields into similar regions. Then we
deploy EHBS by jointly considering potential moving cost of
the MC and spatial-temporal energy distributions. Finally, we
formulate the scheduling problem into a variant of the Interval
Schedule Problem [25], and propose a greedy and 3-factor
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approximation algorithms.

�������	
����
�����
���
�


���

���������
����
�������������
���
����

������

���
������������������

��������������������

���
����������������
��

�������������������
��

������������
���������

��������� ��
��

��
�������

�

!����

Fig. 1. An overview of multi-source energy harvesting and wireless charging
WSN integrated with EHBS.

The contributions of this paper are summarized below. First,
we find the optimal combination of sensors for diverse energy
profiles and minimize deploying cost. Second, we study the
optimal placement of EHBS to achieve the maximal energy
output and optimal sensor coverage. Third, we propose a
3-approximation algorithm to plan MC’s activity by jointly
considering sensor charging and its own energy replenish-
ment. Finally, we conduct extensive simulations to evaluate
the performance of the new framework and compare with
the previous work. Our results indicate that the proposed
framework extends the network lifetime by three times and
doubles the charging capability of MC. To the best of our
knowledge, this is the first work that jointly considers multi-
source energy harvesting with wireless charging to enable a
self-sustainable WSN.

The rest of the paper is organized as follows. Section
II presents the network model and assumptions. Section III
formulates the optimal sensor composition problem. Section
IV investigates the optimal deployment of EHBS considering
energy output and coverage of sensors. Section V studies the
scheduling of MC’s activities to achieve the best coverage of
different grids. Section VI evaluates the performance of the
network and Section VII concludes the paper.

II. PRELIMINARY

This section describes the network model and an overview
of the architecture. Important notations used in this paper are
summarized in Table I.

A. Network Model and Assumptions

Fig. 1 gives an example of a field divided into 3 regions,
where one EHBS is deployed for each region. The ideal setting
is to equip each sensor with all kinds of harvesting devices,
at a high cost of system complexity and risk to break down.
To mitigate these, we assume each sensor is equipped with
either one energy harvesting device (e.g., solar or wind), or
wireless charging coils. Although it may not fully utilize the
environmental energy, the proposed solution is more cost-
effective for large networks and different types of sensors
can be deployed interchangeably to adapt the local energy
distribution. We assume the micro-climate data is available.

TABLE I
LIST OF IMPORTANT NOTATIONS

Notation Definition
yuv Grid in the u-th row and v-th column
nuv Number of sensors in yuv
ηuvz Percentage of z-th type sensors in yuv
cz Manufacturing cost of one z-th type sensor
tk k-th time slot
q Number of EHBS
Gl l-th region
a Region-size precision index
ξ Size deviation ratio
xi i-th charging request

In practice, it is easy to obtain via driving the MC around for
a preliminary field survey. Solar and wind-powered sensors
are deployed according to the energy distribution, with higher
density at energy-rich locations. Wireless rechargeable sensors
are deployed at the same time with other energy harvestable
sensors considering the energy profiles.

B. Overview of Framework

The solution begins with finding the appropriate proportions
of sensors to satisfy the task and energy demands. According
to the density of sensors and deployment patterns, EHBS are
placed at strategic locations to minimize potential moving cost
of the MC. With the locations of EHBS, the MC schedules
its activity of charging sensors and returns to EHBS for the
battery refill. The first problem aims to minimize the fixed
cost of a network plan. The second one attempts to reduce
operating cost and enhance energy-efficiency. The third one
makes sure the network operates without disruption. Although
the three objectives look different, they share the same goal
to optimize the overall design and cost of the network.

We admit that a global, cross-layer optimization that com-
bines all these goals is more comprehensive. However, the
inter-dependence between these objectives would definitely
complicate the solution space and system design. For example,
the deployment of EHBS relies on the density of surrounding
sensors/their types, which is, in turn, solved by the sensor
composition problem at first. If the two problems are consid-
ered together, the solution space would increase many-fold,
and make the problem impractical to solve. As a result, we
pursue a three-step approach following a logic and systematic
manner discussed next.

III. SENSOR COMPOSITION PROBLEM

In this section, we study the Sensor Composition Problem
(SCP). The composition of sensors defines their ratio at var-
ious locations depending on the energy sources/income (e.g.,
solar, wind, and wireless charging). Different types of sensors
usually have diverse manufacturing costs, e.g., solar panels
are more expensive than wireless charging coils and wind
turbines. The objective of SCP is to minimize the total cost
of sensors while making sure network energy is sufficient to
support sensor activity. The inputs are the energy distributions.
Sensors work together in the network to tackle different tasks
such as sensing, computing and communication.

To facilitate analysis, the sensing field is divided into grids.
yuv represents the coordinate of the grid region in the u-th
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row and v-th column. nuv is the number of sensors to be
deployed in the grid yuv . We consider l types of sensors
(l = 3), where the percentages of each type of sensors are,
ηuv1 for solar, ηuv2 for wind and ηuv3 for wireless-powered
sensors. The formulation here is general for any l, i.e., l

can be more than 3 depending on the number of available
energy sources. pz(yuv, tk) is the power income from the z-th
energy source at location yuv and time tk. The grid partitions
the field with minimum granularity, e.g., 100m × 100m, so
energy distribution is approximately uniform in each grid.
Let C(yuv, tk) denote the required energy at location yuv at
time tk, composed of sensing, computing, communication and
data transmission. The sufficient condition for the network to
maintain operation is to ensure the sum of energy income is
not less than the energy consumed at any arbitrary time,

l∑
z=1

nuvη
uv
z pz(yuv, tk) ≥ C(yuv, tk), ∀u, v, k. (1)

To find the optimal composition of sensors while maintain-
ing energy balance, we formulate SCP into the network flow
problem, which finds the feasible flows meeting the demands
of the sink, and involves the least cost from the sensor nodes.
As shown in Fig. 2, the Source represents all kinds of energy
income, and the Sink represents all energy consumption tasks.
There are a total of n sensors and m tasks, where the index
of sensors and tasks are denoted by i and j separately. The
sensors are represented by the nodes directly connected with
the source and the tasks are represented by the nodes directly
connected with the sink in Fig. 2. The m tasks include sensing,
computing and data transmission in different grids yuv . If
sensor i can complete the task j, then a link exists between
them in the flow graph. In the grid yuv , the flow of the link
is denoted as xuv

ijz (z denotes the sensor type). The energy
consumption of task j is Euv

j . The optimization problem can
be formulated as Eqs. (2) to (5),

P1: min
l∑

z=1

nuvη
uv
z cz, (2)

s.t.
∑
j

xuv
ijz ≤ pz(yuv, tk), ∀ i, k, z (3)

0 ≤ xuv
ijz ≤ pz(yuv, tk), ∀ i, j, k, z (4)∑

i

xuv
ij ≥ Euv

j (tk), ∀ j, k. (5)

Eq. (2) minimizes the total manufacturing costs composed of
l = 3 types of sensors, where cz is the cost of deploying
one z-th type sensor. Eq. (3) ensures all the tasks conducted
on sensor i of type z do not consume more energy than the
harvested energy pz(yuv, tk) at any time tk. Eq. (4) ensures
that the energy consumed in each link must be positive and not
larger than the harvested energy pz(yuv, tk). Eq. (5) ensures
that the energy being assigned to complete task j is more than
its energy requirement Euv

j (tk). pz(yuv, tk) can be derived
from the historical data or offline survey conducted by the MC.
A day is slotted into equal intervals tk. The problem solves
for each grid yuv in the field. For given nuv and ηuvz , P1 is

Source Sink

( , )z uv kp y t

ijzx

Wireless 
Rechargeable 

Sensor 
Solar Harvesting 

Sensor 
Wind Harvesting 

Sensor 

Task

Energy Source

Energy Sink

( )uv

j kE t

Fig. 2. Formulation of SCP into a network flow problem.

a maximum flow problem, which can be optimally solved by
MPM algorithm [21]. By plugging different values of nuv and
η
(uv)
z , we can find the values with minimum cost according

to Eq. (2), which has a feasible solution for the problem. For
each computation, MPM algorithm takes O((n +m)3) time.
For the number of sensors n,

(
n+2
2

)
number of combinations

are tested, which is in the order of O(n2), so the total time
complexity is O((n+m)3n2).

IV. DEPLOYMENT OF ENERGY HARVESTING BASE

STATION

An indispensable part of the framework is the wireless
rechargeable sensors. The MC serves as a carrier to deliver
energy from the base station to the sensors. Previous research
assumes this base station is in the vicinity of the power grid.
Unfortunately, it is not only sub-optimal for the MC (in terms
of higher moving cost), but also limited in ad-hoc environment
with no access to the power infrastructure. To address this
problem, multiple Energy Harvesting Base Stations (EHBS)
are adopted in this paper. The EHBS is a simple device with
two major components: a large capacity battery and solar-wind
harvesting device. They can harvest different kinds of energy at
the same time and store enough energy to the battery. The total
energy harvested by the EHBS should be much larger than the
energy consumption in the network for self-sustainability as
estimated during the initial network planning. The harvesting
device is large enough to generate enough energy. EHBS also
offers a wireless charging interface to transmit energy to the
MC. When the MC depletes its own energy, it visits the nearest
EHBS for recharging.

We study the deployment problem of EHBS. The locations
of EHBS determine the amount of energy they can harvest
and the moving cost of MC to reach them. The goal is to
find locations that are energy-rich and easily accessible by the
MC. The energy-rich locations can be found from historical
data. In addition to energy income, EHBS should be deployed
close to places with more energy demands, so as to reduce
moving cost of the MC. Therefore, both energy distribution
and charging demands from MC should be jointly considered.

A. Division of Sensing Field

After the initial survey and estimation, assume there are
q EHBS to be deployed that satisfy the energy demands.

1830



Algorithm 1: Field division algorithm
1 Input: Number of regions q, precision index a, the field.
2 Output: q regions {Gl} dividing the field.
3 k ← �a√q�; divide field into k2 grids {yuv}, Y ← {yuv}.

T ← {yuv : argmin
yuv∈Y,∀u

{v}}, L ← {yuv : argmin
yuv∈Y,∀v

{u}}, l ← 1.

4 yij = argmin
yuv∈T

{u}.

5 if yi(j+a−1) ∈ Y then
6 Gl ← {yuv : i ≤ u ≤ i+ a− 1, j ≤ v ≤ j + a− 1},

Y ← Y \ Gl, l ← l + 1, T ← {yuv : argmin
yuv∈Y,∀u

{v}},

7 jump to line 4

8 yij = argmin
yuv∈L

{v}.

9 if yi(j+a−1) ∈ Y And y(i+a−1)j ∈ Y then
10 jump to line 4

11 while |Y| > k2 − (a− 1)q do
12 while |Gl| < a2 do
13 Gl ← Gl

⋃{yij}, Y ← Y \ {Gl},
T ← {yuv : argmin

yuv∈Y,∀u
{v}}, yij = argmin

yuv∈T
{u}.

14 l ← l + 1.
15 while |Gl| < a2 do
16 Gl ← Gl

⋃{yij}, Y ← Y \ {Gl},
L ← {yuv : argmin

yuv∈Y,∀v
{u}}, yij = argmin

yuv∈L
{v}.

17 l ← l + 1, Gl ← Y .

To deploy the EHBS, the field is divided into q similar-size
regions represented by {Gl}. Since EHBS have similar output
power, deploying them to regions of similar size can minimize
the variance of energy between different regions. This way, the
network can avoid coverage holes due to energy depletion from
the entire region. One EHBS is deployed for each region with
the best coverage. In this subsection, the method to divide the
field is studied.

There are some trivial ways to divide the field. Take a square
area for instance, it can be conveniently split into q equivalent
rectangles. However, this method has some drawbacks: 1)
nonuniform traveling distance in each rectangle. The distance
from the center of the rectangle to the edge varies according
to the directions emitted from the center. Traveling distance
of the MC from sensors to the EHBS is unbalanced, which
causes charging delay to those sensors far from the EHBS 2)
Uneven locations of EHBS (centroid of the rectangles). Their
locations tend to concentrate near the center of the square, that
leads to inconvenient access to the nodes on the boundaries.
Comparing one circle region and one rectangular region of the
same area, there are more sensors in the rectangular regions
whose distances from the centroid are even larger than the
maximum distance (i.e. the radius) in the circle region. It can
be proved that, among different shapes of regions, circular
area has the minimal total distance (i.e. summation of distance
from any point in the region to the centroid). Based on these
observations, the strategy should generate regions as isotropic
as possible (e.g., square, since square is the circle for grids) of
similar sizes. To our best knowledge, there are few previous
research discussing the method to divide field of any shape
into q similar-size and isotropic regions.
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Fig. 3. Division of 8× 8 square field into 7 regions.

We propose a new algorithm to generate q such regions, that
can be applied to any shape. Take a square field for instance,
we divide it into k2 equal-size square grids. k is derived as
k = �a√q�, where a is an input integer called precision index.
Large a results finer granularity. Then the side length for most
of the smaller square region is derived according to �k/√q	 =
��a · √q�/√q	. This means that for most of the small square
regions, the side length is �k/√q	 times the grid length, and
each square region contains �k/√q	2 grids. Thus, we have
� k√

q 	 = a.
Next, the square field is divided into q regions. Starting

from the grid on the top left corner of the field, the algorithm
goes to the right by a grids, and goes downward by a grids,
and generates a square region, which contains a2 grids. This
square region is the first one for EHBS. Then, the next region
is derived by going further to the right, which is adjacent to
the previous square region. The process repeats until there
is no more complete square region found on the right hand
side. Then the process continues downward until there is no
more complete square region for the entire field. For the
remaining grids, starting from the grid on the bottom left
corner of the field, the first a2 adjacent grids form another
region. The same process also starts from the top right corner.
This process continues until the number of the remaining
unassigned grids falls within the interval between [a2, 2a2−1].
Finally, the remaining grids form the last region. The algorithm
is summarized in Algorithm 1.

The algorithm produces most regions in square shape,
some rectangles, and at most one with irregular shape. For
quantitative evaluation, we further define an index ξ called
Size Deviation Ratio as the ratio between the difference of
largest and smallest region size and the mean,

ξ =
Max − Min

Mean
. (6)

For the example of square field (grid area has unit 1), Min =

a2, and Max = �a√q�2−(q−1)a2, and Average = �a√q�2/q.
Hence, ξ is,

ξ = q − a2q2

�a√q�2 . (7)

Fig. 3 gives an example of the algorithm. The field is
divided into 7 regions. a = 3, so the field contains 8 × 8

grids. The number represents the order of the region being
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generated. The first 4 regions are squares. The next two
regions have rectangular shape, and region G7 contains the
remaining unassigned grids. Note that the regions derived by
the algorithm have comparable sizes. The size deviation ratio
is 11% for this example.

B. Deployment of EHBS

Next, EHBS are ready to be deployed into the q regions.
Described in Section III, the total amount and percentages of
different sensors are determined independently for each grid
yuv , thus the density ρuv of wireless rechargeable sensors
in grid yuv is also inhomogeneous for each grid. Using
the centroid can achieve the largest coverage of the sensor
groups in each grid [22] as well as balance the charging
latency to reach those nodes from the centroid. For region
Gl, its centroid Cl by considering the grids contained in Gl is
Cl =

∑
(u,v)∈Gl

yuvρuv/
∑

(u,v)∈Gl
ρuv .

The location of EHBS should be close to the centroid Cl

and the energy-rich places,

argmax
x

(
α(e1(x) + e2(x))− ||x− Cl||2

)
, ∀x ∈ Gl, (8)

where ei(x) denotes the expectation of the i-th type energy at
location x (from historical energy profile). ||x − Cl||2 is the
MC’s moving cost between x and Cl (in proportion to the Eu-
clidean distance). α is a scaling parameter to balance the two.
The optimal location x∗ in region Gl that maximizes the sum
of Eq. (8) is selected as the location of the EHBS. It jointly
considers the potential moving cost and energy distribution to
maximize energy efficiency. The parameter α is a user-input
of the network, which reflects the importance of these two
components. α can be raised if the power of the harvested
energy is more important for the user; otherwise, α can be cut
back if saving of the traveling cost is more crucial. Due to the
uneven distribution of the harvestable energy, it is very difficult
to represent the harvestable energy in a function format. The
region can be divided into some candidate locations according
to the requirement of the granularity. To solve Eq. (8), we can
enumerate these locations as the inputs, and pick the one with
the largest output as x∗. With the certain granularity of the
candidate location, this method is scalable, and the complexity
of the method is in the order of O(S), where S is the area of
the field.

V. SCHEDULING SENSOR CHARGING AND BATTERY

REPLENISHMENT FOR MOBILE CHARGER

The MC charges sensors to satisfy their energy demands
as well as replenishes its own energy at the EHBS once the
energy is depleted. This section studies scheduling of such
activities.

A. Group Interval Scheduling Maximization

Charging requests from sensors are from various locations in
the field due to dynamic spatial-temporal energy distribution.
Wireless rechargeable sensors play a key role in this situation
to maintain network operation. The objective of the MC is to
satisfy as many requests as possible in each grid, while also

�� �� �� �� �� �� �� 	� 
� ����� �� �� �� �� �� �� 	� 
� ��� ���

� ++���� ����������
�
�� ��

��
������������ ��
��������

��
������,
�-
�� �

�
����,�+���.�,
�-��

�� /���������,�+���.�,
�-�� � ���
���������� �

0

#

*

*

$

#

$

0 * %

%

0

#

*

* #

$

0

$

* %

%

Fig. 4. Joint scheduling of sensor charging and energy replenishing by MC.

satisfying energy demands from other grids. In the meanwhile,
the MC should determine an appropriate time to replenish its
own battery at EHBS. The charging requests are classified by
the grids that are sending them.

Energy requests arrive at the MC at different time during
time T . A charging task xi starts at time si and ends at ti.
Meanwhile, the MC needs to spend T0 time to refill its own
battery in T . We ignore the traveling time of MC because it
takes much less compared to the charging time. For example,
moving on a 10× 10 region with a speed of 10 m/min results
1.5 min on the longest diagonal movement. Compared to that
battery charging usually takes 30-90 mins, such minimum time
expense is ignored to simplify the problem. As shown in Fig.
4, schedule of charging tasks may have temporal conflict with
each other. Due to limited wireless charging range, the MC
can only respond to one request at a time. To charge as many
groups as possible, during T time, the MC finds the maximum
number of grids containing non-conflicting charging tasks and
leaves at least T0 time for recharge. The problem is formulated
as follows,

P2: max |A|, (9)

s.t. T0 · Pr ≥
∑
i∈A

(ti − si) · Pc − Emc, (10)

T0 +
∑
i∈A

(ti − si) ≤ T. (11)

A is the set of grids selected by the MC for charging. Pr and
Pc are the charging rates at EHBS and sensors, repectively.
Emc is the residual energy of the MC. P2 maximizes the
number of grids to be charged in T , while constraint (10)
ensures the energy replenished to the MC is larger than the
energy demand of sensors, and constraint (11) imposes the
time spent on charging sensors and recharge time is within T .

The optimization problem is a variation of Group Interval
Scheduling Problem (GISP) [23]. It considers groups of tasks,
where each task xi is represented by an interval indicating
its starting time si and finishing time ti. A subset of all the
intervals are considered to be compatible if any two of them
do not have any overlapping with each other. If an interval is
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chosen, then it is the representative of the group containing
it. GISP aims to find the subset of compatible intervals with
the maximum coverage of different groups, i.e., maximize the
number of groups (grids) having at least one representative in
the derived subset.

Different from GISP, P2 leaves T0 in addition to the
charging tasks. The constraints (10) and (11) give the upper
and lower bound for T0. Combining them gives the following
constraint, ∑

i∈A
(ti − si) ≤ T + EMC/Pr

1 + Pc/Pr
. (12)

Therefore, if the summation of compatible intervals of differ-
ent charging tasks is not larger than the r.h.s of Eq. (12), then it
is a feasible solution for P2. The new problem is an extension
to GISP and we call it Reserved Group Interval Scheduling
Problem (R-GISP).

Definition. Reserved Group Interval Scheduling Problem
(R-GISP) looks for the a set of non-overlapping representatives
of maximum sizes from groups of intervals and assures the
summation of the lengths of all intervals in the set is no larger
than a given constant.

NP-Hardness. R-GISP is NP-hard.
Proof: In order to prove R-GISP is NP-hard, we first

prove GISP is NP-hard and GISP can be reduced to R-GISP.
A special case of GISP is NP-hard. A special case of GISP
solves the problem whether there is such compatible set that
contains at least one representative from each group, i.e., the
size of the groups being represented is equal to the number of
groups. This special case is called Group Interval Scheduling
Decision Problem (GISDP). It has been proved in [24] that
GISDP is NP-hard since Boolean Satisfiability Problem is a
special case of GISDP and Boolean Satisfiability Problem is
NP-hard. GISDP is a special case of GISP where the maximum
groups being represented is equal to the total number of groups
so GISP is NP-hard. R-GISP removes constraint (12) from
GISP so GISP is a special case to R-GISP thus R-GISP is
NP-hard.

B. Earliest Finishing First Algorithm

Due to the NP-hardness of R-GISP, it is not possible to find
an optimal solution in polynomial time unless P=NP. Hence,
we seek sub-optimal solutions in polynomial time.

As shown in Algorithm 2, the charging task xi with the
earliest deadline ti is chosen. All charging tasks intersecting
with it are removed. Charging tasks from the same grid
are also removed. This process iterates until no task is left.
Second, for those intervals chosen after the first step, the
algorithm sums them up and compares the summation with
(T+EMC/Pr)/(1+Pc/Pr), which is the maximum charging
time. If the summation is smaller than the maximum charging
time, it removes all the intervals overlapping with them. For
the remaining intervals, the algorithm performs the first step
again. If the summation is larger than the maximum charging
time, it removes the longest interval from the covering set
until the summation of the remaining intervals is not larger
than the maximum charging time. In the last step, for a given

Algorithm 2: Earliest Finishing First Algorithm
1 Input: A number of n charging requests X = {xi}, xi = [si, ti],

distributed in grids {yuv}, an empty set A.
2 Output: Charging and energy replenishment sequence A for MC.
3 X̂ ← X while X̂ �= φ do
4 f = argmin

xi∈X
{ti}, xf ∈ yuv , A ← A⋃{xf};

X̂ ← X̂ \ {{xj : xj ∩ xf �= φ, ∀j}⋃{xj : xj ∈ yuv , ∀j}
}

.

5 if
∑

i∈A(ti − si) ≤ [T + EMC/Pr]/[1 + Pc/P] then
6 X ← X \ A; jump to line 3.

7 if
∑

i∈A(ti − si) > [T + EMC/Pr]/[1 + Pc/P] then
8 while

∑
i∈A(ti − si) >

T+EMC/Pr
1+Pc/Pr

do
9 e ← argmax

xi∈A
(ti − si); A ← A \ {xe}

10 MC charges sensors following the charging sequence derived in A.
11 MC replenishes its energy at the closest EHBS during spare time.

Algorithm 3: 3-Approx Shortest Interval First Algorithm
1 Input: A number of n charging requests X = {xi}, xi = [si, ti],

distributed in grids {yuv}, an empty set A.
2 Output: Charging and energy replenishment sequence A for MC.
3 while

∑
∀xi∈A |ti − si| ≤ [T + EMC/Pr]/[1 + Pc/P] do

4 xj ← argmin
xi∈X

|ti − si|, A ← A⋃{xj}
5 for i=1, 2, 3, . . . , n do
6 if xi ∩ xj �= φ then
7 X ← X \ {xi}.

8 A ← A \ {the last interval put into A}.
9 MC charges sensors following the charging sequence derived in A.

10 MC replenishes its energy at the closest EHBS during spare time.

period T , MC performs the charging tasks in A according to
the order of the starting time. MC replenishes its own energy
at the closest EHBS when idle.

An example is shown in Fig. 4. 11 charging requests
from 5 different regions are received. Solving the algorithm
yields that 5 requests from different regions are met so as to
achieve the best region coverage. T0 time is left for the energy
replenishment of MC.

The complexity of the algorithm is analyzed below. Assume
there are n charging requests from m grids. Sorting requires
O(n log n) time. First, finding the intervals intersecting with
the chosen one takes O(n) time with at most O(m) times,
and removing the intervals takes O(n) time. Therefore, the
time complexity for the first step is O(n log n) + O(nm).
For the second part, summing up the intervals and comparing
with the maximum charging time takes O(n) time, and this
process takes at most m times, therefore O(nm) in total. The
procedure is repeated at most n/m times and the total time
complexity is O(n2(log n/m+ 1)).

C. 3-Approximation Algorithm

In this section, we propose a new algorithm as shown in
Algorithm 3 with 3-approximation ratio for R-GISP. As far
as we know, this is the first approximation algorithm with
constant ratio for the R-GISP problem. The previous earliest
finishing first algorithm does not have a theoretical bound
of performance because choosing the tasks with the earliest
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finishing time does not consider the duration of tasks at
all. Without a performance guarantee, the ratio between the
optimal solution and the result derived is unbounded (can be
arbitrarily large in the worst case), and we can not either infer
any insight about the optimal solution from the results.

Instead of looking for the earliest finishing time, the new
algorithm seeks the shortest interval. For a set of tasks,
the algorithm picks the one with the shortest duration, and
removes the tasks intersecting with the chosen task from the
set of tasks. If the total length of chosen tasks is smaller than
(T +Emc/Pr)/(1+Pc/Pr), then continue the process for the
remaining set until the largest set of tasks whose total length
is smaller than the preset limit T+EMC/Pr

1+Pc/Pr
.

Approximation Ratio. The Shortest Interval First Algo-
rithm has 3-factor approximation for R-GISP.

Proof: Denote the optimal solution for R-GISP as OPT ,
and the solution derived by the algorithm as SIF . The
function f maps any interval I ∈ OPT to an interval in SIF

according to the following rule,

f(I) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�: I, if I ∈ SIF ;

�: Shortest interval in SIF intersecting with I,

if I /∈ SIF and I intersects with intervals in SIF ;

�: The longest interval in SIF , if I /∈ SIF and I

intersects with no interval in SIF.

The above mapping function from OPT to SIF is composed
of three cases. For any interval J in SIF , if J ∈ OPT ,
then there is only one interval in OPT that could be mapped
to SIF according to the compatible property of intervals in
OPT .

If J /∈ OPT but J intersects with intervals in OPT , then
there is at most 2 intervals in OPT that could be mapped to J

via function f(I). Assume there are 3 such intervals in OPT ,
then one of the intervals must be totally covered by J , and is
also shorter than J , which contradicts the property that J is
the shortest interval that intersects with the duration of J .

For the longest interval Jmax in SIF , some number of
intervals in OPT are mapped to it according to the third case
of f(I), which do not intersect with any interval in SIF .
Note that, such intervals I in OPT must have longer duration
than Jmax, because Jmax must be smaller than any interval
in the task set which does not intersect with SIF ; otherwise
it is not the shortest interval to be picked that contradicts the
procedures defined in SIF . Therefore, the number of such I’s
in OPT can not be larger than |SIF |; otherwise, the duration
of all intervals in OPT is larger than the time limit T , which
is a contradiction.

For any interval (besides of the longest) in SIF , f(I) maps
at most 2 intervals in OPT to it. For the longest interval Jmax

in SIF , f(I) maps at most |SIF | intervals to it. Since any
interval in OPT is mapped to an interval in SIF , |OPT | ≤
3|SIF |.

At the end, we compute the time complexity of the 3-
approximation algorithm. For n charging requests, sorting
them, finding the shortest interval and removing the intersect-
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Fig. 5. Optimal sensor composition and network lifetime. (a) RGB map for
the best composition of 3 kinds of sensors. (b) Comparison of lifetime for
different sensor compositions vs. field sizes.

ing ones take O(n log n), and this process is conducted at most
n times. The total time complexity is O(n2 log n).

VI. PERFORMANCE EVALUATIONS

We evaluate the performance of the self-sustained frame-
work by a discrete-event simulator developed in MATLAB
and compare with the previous work that depends on single
energy source [26]. In the simulation, we use data trace of
solar radiation from SOLARGIS [27] and wind power from
NREL [28]

The sensing field has side length of L = 2000 m. Time is
equally slotted (1 hour) and the average energy consumption
rate of working sensor is 12 J/min. A typical sensing range rs
is 15 m. Wireless rechargeable sensors have Li-Ion battery of
1200 mAh capacity and 3.7 V working voltage with Δt = 30

mins charging time from empty to full [14]. Solar/wind-
powered sensors have batteries of 2150mAh and 3.7 V work-
ing voltage. The manufacturing costs of solar-powered, wind-
powered and wireless rechargeable sensors are $50, $35 and
$30 for one sensor respectively [16]. The maximum energy
harvesting power for solar-powered sensor and wind-powered
sensor is 2W ·h and 1.5W ·h [16] , respectively. The maximum
energy harvesting power for EHBS are 2kW · h [17]. The MC
moves at a speed of 10 m/min at an energy consumption rate of
5 J/m. When the percentage of remaining energy for wireless
rechargeable sensor is lower than a threshold of 20%, they
send out requests for recharge. The simulation time is 360

days.

A. Sensor Compositions and Lifetime

First, we evaluate the optimal composition of three types of
sensors (solar, wind and wireless rechargeable) for the min-
imum total cost and evaluate the network lifetime compared
with network of one energy source. Fig. 5 (a) demonstrates
the number and percentages of 3 kinds of sensors for each
grid by applying RGB heatmap. The color of each grid is
determined by an [R G B] vector, where R,G,B represent
the solar-powered, wind-powered and wireless rechargeable
sensors respectively. The values are proportional to the number
of corresponding sensors in each grid, which is normalized by
the total number of sensors of their kinds. In other words, the
color of each grid is the total number of sensors deployed and
the ratios of each kind. For example, when [1 0 0] is red,
only solar-powered sensors are deployed in the grid; when
[0 1 1] is cyan, the same number of wind-powered sensors
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Fig. 6. Residual energy and minimal number of EHBS. (a) Residual energy at
each EHBS for different deployment methods. (b) Minimal number of EHBS
to achieve energy balance.

and wireless rechargeable sensors are deployed with no solar-
powered sensor.

From Fig. 5(a), it is observed that for the region [100 ∼
400; 0 ∼ 200] (i.e., the area in 100m ≤ X ≤ 400m and
0m ≤ Y ≤ 200m), similar number of solar sensors and
wireless sensors and almost no wind sensors are deployed,
since those areas have solar energy whereas lack wind energy;
for the region [100 ∼ 400; 600 ∼ 800], most of the sensors
are solar-powered since those areas have abundant solar energy
and no wind energy; for the region [600 ∼ 900; 700 ∼ 900],
wind sensors and wireless sensors have similar number while
not many solar sensor, since those areas are abundant of
wind energy and lacking of solar energy; for the region
[600 ∼ 900; 900 ∼ 1000], there are many sensors of all three
kinds, since those areas are lacking of both solar and wind
energy; for the region [0 ∼ 300; 900 ∼ 1000], the numbers
of different sensors are similar since those areas are sufficient
to provide all kinds of energy. The simulation demonstrates
that our framework precisely selects different ratios of sensors
reflecting the ambient energy distribution while minimizing
the total manufacturing cost.

Fig. 5(b) compares network lifetime, which is defined as the
time expansion until the first energy depletion occurs; other-
wise, the lifetime lasts the entire simulation time (360 days).
Note that some energy depleted nodes would temporarily turn
into sleep mode and wait for energy refill from the renewable
energy or wireless charging. Other nodes with energy can still
execute the network tasks and maintain operation. The simula-
tion is conducted for different sensor compositions. “All kinds”
means all three energy sources are used. “Solar+Wireless”
means only solar and wireless-powered sensors are used.
We alternate through all the combinations and their optimal
compositions are computed by the MPM algorithm [21].

The results indicate having all kinds of sensors is able to
maintain network lifetime over 360 days (for most field sizes).
It still supports 273 running days for a giant area of 20.8
km2 (5 times of the original size). Two types of sensors have
shorter lifetime but still much longer than the single type.
The difference among “Solar+Wireless,” “Wind+Wireless” and
“Wireless” becomes smaller when the area increases. This is
because, relying on a single energy source is unstable when
it suddenly becomes unavailable, that is more likely for larger
field sizes. The lifetime of single energy harvesting sensor is
the worst, which lasts for only about 20 days even for small
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Fig. 7. Grid coverage percentage and covering area by MC. (a) Grid coverage
percentage for different covering algorithms. (b) Covering area of one MC
for different covering algorithms.

area of 1.1km2. Our framework achieves at least 3 times longer
lifetime compared with traditional network of a single energy
source. Meanwhile, the network depending on solar energy
usually enjoys longer lifetime, since energy density of solar
radiation is larger and the radiation is more consistent than
wind. It is also observed that combining more than 2 types
of energy harvesting sensors with the wireless ones is more
beneficial for extending network lifetime.

B. Energy Output and Traveling Cost of MC

In this subsection, we evaluate network energy status using
different methods to deploy EHBS and the number of EHBS
needed to satisfy the energy demands of MC. Fig. 6 (a)
demonstrates the total residual energy of q EHBS for different
deploying strategies. The residual energy is the average energy
remaining of the q EHBS over 360 days. It is difference of
the harvested energy and the energy dissipated to replenish the
MCs. One MC is assigned to one EHBS and responsible for
the charging of one region.

Fig. 6 compares a few possible strategies of deploying
EHBS. “Joint” is proposed in Section IV. “Max Energy”
deploys EHBS at the position with the maximum energy.
“Min Travel” deploys EHBS at the centroid of each region.
“Random” deploys q EHBS randomly in the field following
a uniform distribution. We can see that residual energy grows
with an increasing number of EHBS for all cases. For all four q
values, “Joint” always has the maximum energy storage while
“Random” is the worst. For q = 5, 7, the residual energy
of “Min Travel” and “Random” is less than 0. When q is
small, it is more important to wisely pick the locations of
EHBS, since one false deployed EHBS is less likely to be
compensated by other EHBS. “Max Energy” is always better
than “Min Travel” since the harvested energy is much larger.
The difference between the strategies becomes less obvious
when q increases, because reduced region size weakened the
impact from location choices.

Fig. 6 (b) shows the relation between the minimal number
of EHBS needed to maintain energy balance. For a field of
certain area, the minimal number of EHBS needed to maintain
energy balance is evaluated for different deploying strategies.
Maintaining energy balance needs to ensure the continuous
operation. It shows that the minimal number of EHBS for
“Joint” increases almost linearly with the increase of field
size. The number for “Max Energy” is larger than “Joint”
but still linear. “Min Travel” and “Random” increase much
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faster. “Random” grows the fastest. This is because random
deployment tends to leave coverage holes for some regions
and cause network disruption.

C. Network Coverage and Charging Capability

Finally, we evaluate network coverage and charging capa-
bility of an MC by comparing with the previous work that
charges all sensors in [20]. Fig. 7 (a) demonstrates coverage
percentage with the number of MCs in terms of grids. The
coverage percentage is the ratio of grids covered by MC to
the total number of grids. “Max Cover” applies the maximum
coverage charging algorithm. It jointly schedules the activities
of charging sensors and replenishing the energy of MC for the
maximum coverage rate of different grids. “All Cover” is the
previous approach in [20], which fulfills all charging requests
in one grid first before moving to the next one. It is observed
that our algorithm exhibits significant improvement for the
coverage percentage of grids. “Max Cover” achieves 100%
coverage ratio while “All Cover” achieves at most 58%. The
coverage ratio increases for our algorithm when the number
of EHBS increases, since larger q means less traveling cost
for MC to replenish its own energy and also smaller size of
grids. “Max Cover” does not achieve 100% sometimes with a
few MCs, because of large energy request number vs. charging
capability.

Fig. 7 (b) shows the covering capability of one MC for dif-
ferent charging algorithms. Covering capability is represented
by the largest area one MC can serve (timely response to all
the requests). As shown in Fig. 7 (b), the proposed “Max
Cover” algorithm yields over 2 times charging capability for
one MC than the “All Cover” algorithm, i.e., the charging
capability is doubled. The charging area is not affected much
by the increase of the grid size whereas it is not the case for
“All Cover.” This is because larger grid means more sensors to
be charged in one grid if “All Cover” is applied. This would
then postpone charging in other grids. When q increases, both
algorithms have larger covering area because more EHBS
means shorter traveling distance for the MC, therefore it can
spend more time in charge as well as enlarge its covering area.

VII. CONCLUSIONS

In this paper, we propose a new self-sustained WSN via
integrating multi-source energy harvesting with wireless charg-
ing. First, we derive the optimal composition of different types
of sensors by solving a maximum flow problem to minimize
manufacturing cost. Second, we jointly consider both energy
distribution and moving cost to deploy EHBS. Finally, we
propose a scheduling algorithm for the MC to coordinate
wireless charging and energy replenishment at EHBS, prove
its NP-hardness and propose a 3-approximation algorithm.
Finally, we demonstrate that the framework significantly ex-
tends network lifetime and improves energy efficiency through
extensive simulations.
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