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Abstract—The rise of dockless electric bike sharing becomes
a new urban lifestyle recently. More than just the first-and-last
mile, it offers a new modality of green transportation. However,
in addition to the traditional re-balance and overcrowding prob-
lems, it also brings new challenges to urban management and
maintenance. Due to the safety risks of batteries, customers are
regulated to park at designated locations, which potentially causes
dissatisfaction and customer loss. Meanwhile, service providers
should charge those scattering low-energy batteries in time. To
address these issues, we propose E-sharing, a two-tier optimization
framework that leverages data-driven online algorithms to plan
parking locations and maintenance. First, we balance the user
dissatisfaction and the number of parking locations by minimizing
their sum. To account for real-time dynamics while not losing
track of the historical optimality, we propose an online algorithm
based on its near-optimal offline solution. Second, we develop an
incentive mechanism to motivate users to aggregate low-battery
bikes together, saving the cost of bike charging. Our experiment
based on the public dataset demonstrates that the online algorithm
can minimize the cost from the conflicting objectives and incentive
mechanism further reduces the maintenance cost by 47%.

Index Terms—Smart transportation, mobile computing, electric
bike sharing, online optimization, big data

I. INTRODUCTION

Dockless bike-sharing has redefined the short-term bicycle
rental business in China, and quickly expanded globally. With
a GPS-based mobile app, users enjoy the flexibility to park
almost anywhere. Being a green solution to the first-and-last
mile problem, bike-sharing is promising to reshape the car-
centric urban transportation in the future smart cities. Users
can pick up a bike, ride for a while and drop at anywhere
they want. Studied in [1], an average ride usually lasts within
three miles. However, what if users want to ride extra miles?
Those “human-powered” bicycles barely satisfy such emerging
demands, especially for senior riders with physical limitations,
or on hilly terrain like San Francisco. To fill this market niche,
new start-up companies begin to offer an electric boost to
the bicycles, i.e., the dockless electric bike sharing (E-bike
sharing) [2]. As shown in Fig. 1, companies like XQBike
[3], Lime [4], Qee Bike [5] and Bird Scooter [6] are quickly
spreading regionally in the U.S., Europe and China. Powered
by electricity, cyclists can enjoy an effortless longer ride, reach
their destinations in the shortest route and save the time waiting
for crowded transportation during rush hours.

Unfortunately, the free-floating form of bike-sharing caters
to the customer’s needs at a cost of public space, urban
management and maintenance [9]–[11]. E.g., the peak time
drop-off at the connections of transportation leads to a parking
turmoil and puts pressure on the public space and management.
E-bike sharing faces more restrictions and challenges due

to the risk of fire of lithium batteries [7]. In contrast to
the traditional bikes that can be parked anywhere, for safety
precautions, many municipalities do not allow E-bikes to park
uncoordinately at random locations. Some cities even impound
E-bikes [8]. As a result, service providers restrict customers to
only drop off at the designated locations. Such regulation could
easily dampen users’ enthusiasm if the locations are far from
their final destinations. To make the system sustainable, energy
replenishment is also crucial. Building dedicated charging sta-
tions is expensive and unscalable [2]. Thus, the current methods
pursue an infrastructureless solution that allows users to park at
some pre-determined locations and hires operators to replenish
the low-energy E-bikes. Hence, maintenance becomes a new
challenge in the E-bike sharing systems.

(a) (b) (c)

Fig. 1: The emerging E-bike sharing around the world (a)
XQBike [3] (b) Qee Bike [5] (c) Bird scooter [6].

Existing works of bike sharing mainly focus on the problems
of re-balancing [9]–[11], location optimization [13]–[16] and
usage prediction [17]–[19]. Re-balancing employs a truck or
trike to reposition bikes from the congested locations to the
empty ones. A static re-balancing problem is solved using
branch-and-cut algorithm [9]. Policy iteration method is pro-
posed to minimize the long-term customer loss due to unbal-
anced bike distributions [10]. An incentive strategy is designed
in [11] to ask customers to help the re-balancing process. In
[12], customers are incentivized heterogenously to park e-bikes
at desiring locations considering varying difficulties. Another
line of works attempt to optimize the location of parking spots
by mining human mobility, point-of-interest data [13]–[15] or
crowdsourced surveys [16]. These methods can be used to
determine candidate locations but hardly capture the real-time
situations. To build better re-balancing mechanisms and expand
business, prediction models are constructed based on multi-
modal data features using machine learning techniques [17]–
[19].

Although these mechanisms are effective, they are not read-
ily available to tackle the high maintenance cost in E-bike
sharing. In particular, building an efficient system requires
solutions to the following problems. First, because of restricted
parking, how to minimize the number of parking locations
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Fig. 2: Existing problems in a representative E-bike sharing app [3] (a) stations are far from subway and recreation. (b) not
enough stations near the residential area. (c) inefficient spatial coverage near the university (d) live energy status at some stations.

while considering user dissatisfaction. Second, unlike the ex-
isting methods that are based on offline data analysis, how to
adapt to the evolving, new requests and make decisions online.
Finally, how to optimize bike charging based on user behaviors.

To address these issues, we propose E-Sharing, a two-
tier optimization framework that makes online decisions but
keeps an eye on the historical patterns. The first goal is
to optimize maintenance cost by minimizing the number of
parking locations. This alleviates the safety risks, impact on
public space, and makes maintenance more efficient (fewer
locations the operator should handle). Meanwhile, user dissat-
isfaction should be also considered while assigning them to the
closest parking given their destinations. We take both variables
into consideration and formulate an optimization problem. An
offline algorithm is first introduced that can make near-optimal
decisions based on historical data. Under its guidance, we
further develop an online algorithm to respond to the real-
time data patterns. It features a statistical testing to determine
whether the current data comes from the same previous dis-
tribution, and adjusts the parking locations accordingly. The
second tier optimizes charging cost by incentivizing users to
aggregate low-energy bikes together. Different from [11] where
the incentives are extra payments made by the system, E-
sharing balances the incentives with potential expenditures to
accomplish an actual cost saving for the service provider. It
can be integrated with any prediction engine. We implement
a state-of-the-art recurrent neural network [30] for short-term
demand forecast and feed the predictions into the algorithms.

The contributions of this paper are threefold.
• As an emerging type of smart and green transportation,

we identify new challenges in the dockless E-bike sharing
systems being the user dissatisfaction and the usage of
public resources. An algorithm is proposed to balance the
two, which adaptively combines the advantages from both
the online and offline solutions.

• We propose a new mechanism to optimize the high cost
due to charging maintenance by incentivizing users.

• We conduct extensive evaluations of the proposed frame-
work on a public dataset [31]. The evaluation indicates
over 25% saving of public resources and 47% of mainte-
nance cost compared to the existing algorithms.

To the best of our knowledge, this is the first work that develops
an efficient algorithmic framework to offer better planning
and optimized maintenance in electric bike sharing system for

future smart cities.
The rest of the paper is organized as follows. Section

II presents the motivation and system overview. Section III
minimizes cost of maintenance and user dissatisfaction. Section
IV develops the incentive mechanism. Section V evaluates E-
Sharing. Section VI concludes the paper.

II. PRELIMINARY

A. Motivation

Fig. 2 demonstrates a use case of a representative app [3]
with snapshots taken in Shanghai. The app looks for the closest
locations where the customers can return their E-bikes as
shown in Fig. 2(a-c). We discover that parking locations (or
referred as stations)1 based on empirical observation barely
catch up with the real-time demands. For example, the stations
are far from the Point of Interests (POIs) such as subway
stations or park/recreation (Fig. 2(a)); only one station is
available across the river near a large residential area (Fig.
2(b)); stations are too close, thereby causing an insufficient
spatial coverage (near the university in Fig. 2(c)). Because the
service charge is metered, the static placement of stations leads
to inconvenience or even complaint if no station is available
nearby to return the E-bike. We further examine the energy
status at some locations as shown in Fig. 2(d). Though a
majority of the E-bikes have sufficient residual energy, the
distribution features a tail of low-battery bikes that necessitates
energy replenishment at each station. Because of continuous
usage and mobility dynamics, it is quite difficult to plan a
charging sequence to refill all the batteries at once.

E-Sharing addresses these issues through the two-tier frame-
work. First, it selects candidate parking locations from a large
set of available POIs [13]–[15] so the actual parking becomes
dynamic according to live requests. When there is demand
near the POIs, a new station is established according to the
batch of trip requests. The location reflects the spatial-temporal
consensus among the users. Second, it relocates and aggregates
the tail distribution so that operators need not to visit all the
locations for charging. The details are discussed in Section III.

B. System Model

Fig. 3 shows an overview of the system components: ¶

the prediction engine forecasts future usage pattern; · the

1We use stations and parking locations interchangeably, henceforth. They
refer to infrastructureless locations where the E-bikes is returned or picked up.



Fig. 3: System architecture of E-sharing.

TABLE I: List of important notations
Notation Definition
fi Cost of public space occupation at location i
cij Walking cost from i to j (measured in Euclidean distance)
P Set of parking locations being established
g(·) Penalty function to adjust parking deployment
k Number of parking computed by the offline algorithm
U Set of incoming user requests
L Set of low-battery E-bikes that requires charging

forecasting results are fed into the parking placement algorithm
to generate candidate stations; ¸ the system performs two-
sample test periodically to compare the current distribution
with the previous one; ¹ according to the test result, the
online placement algorithm generates real-time decisions based
on the offline solution; º the system determines appropriate
incentives to seek cooperation from users; » users accept the
offer and help the service provider relocate the low-energy
bikes.

To start a new trip, users look for available E-bikes using
a mobile app (similar to Fig. 2). The trip request is streamed
to the server backend, calculated by E-sharing and assigned
appropriate parking locations. We assume that users faithfully
enter their destinations and the service provider does not
exploit these location data under privacy terms and legislation.
For privacy-preserving, additional security features can be
introduced such as hashing/anonymizing the user information
or obfuscation with location-wise differential privacy [20].
Users follow the service agreement to park at designated area
and the service provider imposes an extra charge to regulate
misbehavior. The service provider hires a fleet of operators
for maintenance. We assume that the reserves of E-bikes are
balanced, which satisfy the demand and do not overwhelm the
capacity by executing the procedures in [9]–[11]. The operators
either replace [3] or charge [5] the batteries (unified as charging
henceforth) depending on their technologies. Normally, the
operators follow a policy to refill those E-bikes with energy
less than a threshold at each location (e.g., below 20%).

III. TIER ONE: DYNAMIC PARKING LOCATION

PLACEMENT

The first tier of the framework studies dynamic station
placement and formulate it as a Parking Location Placement
(PLP) problem.

A. Problem Formulation

The Euclidean space of a metropolitan area is divided into
grids, which represent the minimum granularity such that users
all agree to walk within a grid. We use the centroid to represent
each grid and all the arrivals in a grid are denoted by centroid
j for simplicity. Consider an undirected graph G = (V,E),
where vertices are the centroid and the edges are the links
from the centroid to established parking locations. A subset
of P parking locations are selected among the set of all N
grid locations (P ⊂ N ). The space of N can be reduced
to filter out those less popular locations [15]. The optimal
parking locations are determined based on two major factors:
user dissatisfaction and space occupation. On one hand, the
business goal is to satisfy the pick-up and drop-off demands.
For example, if a user wants to drop off but parking is far from
the final destination, she may choose not to buy the service,
similar for the pick-up.
Definition 1 (User dissatisfaction). We model user dissatisfac-
tion cij to be proportional to the walking distance dij between
her destination j and assigned parking i. Given the expected
number of arrivals aj at j, cij = aj · dij .

Ideally, users should be allowed to park anywhere but it
certainly drives up public space occupation, and subsequently
the cost of battery charging. In fact, given their surroundings,
parking locations have different impact perceived from the
public. E.g., crowded places such as subway station should
have a high cost due to limited public space.
Definition 2 (Space occupation). We model the space occupa-
tion to be proportional to the number of parking locations. A
new parking at location i is established with cost fi.
Problem Formulation. Obviously, there exists a trade-off
between the two: more parking satisfies users at an increasingly
higher cost of urban space. Hence, our objective is to minimize
the total cost as their sum over a period T ,

P1 : min
∑
t∈T

(∑
i∈P

∑
j∈N

ctijx
t
ij +

∑
i∈P

f t
i

)
(1)

Subject to ∑
i∈P

xtij = 1; j ∈ N , t ∈ T (2)

xtij ≤ yti ; i ∈ P, j ∈ N , t ∈ T (3)

xtij , y
t
i ∈ {0, 1}; i ∈ P, j ∈ N , t ∈ T (4)

The decision variable xtij is 1 if all of the arrivals in j are
assigned to park at i. yti is 1 if a parking is established at i;
otherwise it is 0. Initially, the candidate parking locations are
N . The optimization problem aims to find a subset of P such
that each arrival in t is assigned to a proper parking and the
total cost is minimized.



Algorithm 1: 1.61-factor Parking Placement Algorithm
(Offline)

1 Input: Set of grid locations, N .
2 Output: Set of parking locations P and Bi, i ∈ P .
3 while t 6= |T | do
4 while N 6= ∅ do
5 Find

i∗ = argmin
i∈N

( ∑
j∈Bi

ctij + f ti −
∑

j∈B′i

(ct
i′j − c

t
ij)
)
/|Bti |.

6 Deploy i∗, connect ∀j ∈ Bti
⋃
B′i to i∗, N ← N − Bti .

7 Output P; restore N to initial values.

B. Offline Placement Algorithm

The PLP problem is analogous to the Facility Location Prob-
lem [21]–[24], which is unfortunately NP-hard. The original
problem is studied in the context of logistics that finds the
minimal total cost to open a set of facilities that minimize
the sum of transportation cost and facility cost. Due to NP-
hardness, no polynomial-time algorithm exists unless P equals
NP. A few approximation algorithms are studied [21]–[24].
In [21], a 3.16-approximation algorithm is first proposed and
improved by [23] to 1.61, which is very close to the theoretical
inapproximation bound 1.46 of this problem [24]. The algo-
rithm reassigns destination requests to new parking locations
whenever a lower cost is found during the process. For each
parking i, an intermediate set Bi is introduced to denote those
grid locations that have been assigned to it (Bi ⊆ N ). The 1.61-
factor algorithm iterates through N to select i∗ with minimum
average cost as the new parking locations,

i∗ = arg min
i∈N

[ ∑
j∈Bi

ctij + f t
i −

∑
j∈B′i

(cti′j − ctij)
]
/|Bt

i |, (5)

and then update the requests assigned to the new parking. The
iteration stops after all of the grids in N have been assigned to
one of the parking in P . The time complexity is O(N3) and
the procedure is summarized in Algorithm 1.

C. Online Placement Algorithm

The offline algorithm achieves near-optimality when the suc-
cessive occurrences are known. While such future occurrences
are not known beforehand, a method is to predict the trip
requests using machine learning as they should exhibit certain
spatial-temporal regularity [17]–[19]. Nevertheless, machine
learning relies on the assumption that the test samples are
independently drawn from the same distribution at training time
because machine learning is good at interpolation rather than
extrapolation (when data comes from different distributions). In
bike sharing system, it is common to encounter fluctuations that
are temporary, or even difficult to predict ahead of time. For
instance, events such as concerts or sports games might lead
to short-time demand surge at previously unexpected locations.
Traffic reroute due to road work or accident may not be
reflected by historical data either. Once the current distribution
changes due to demand dynamics, suggestions based on the
historical prediction become less desirable. A prediction-free
solution is to make decisions online as discussed next.
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Fig. 4: Examples of solving PLP (a) offline algorithm (b)
online algorithm (56% cost increase compared to the offline
algorithm).

Once a request is received, the system makes irrevocable
decisions immediately, without any knowledge of the succes-
sive requests. Based on the requesting destination, the system
decides where the user should park, i.e., whether the destination
would be selected as a new parking with occupation cost fi
or simply assigned to an existing one with dissatisfaction cost
cij . The system does not know or attempt to predict destina-
tions for future requests. An online algorithm is proposed by
Meyerson [25]. The algorithm is further extended for clustering
online advertisement in [26].

We compare the offline [23] and online [25] algorithms in
Fig. 4. A stream of 100 random arrivals in a square field
(1000 × 1000m2) is simulated. For the offline algorithm in
Fig. 4(a), 5 parking locations are established and the cost of
dissatisfaction, space occupation, and their sum are 16795,
25000 and 41795 respectively. The costs are all measured in
the distance unit of m, where the space occupation cost is
converted from monetary cost to equal walking distance of
users (e.g. 1 $ equal to 1000 m). For the online algorithm in
Fig. 4(b), 9 parking locations are established and their relevant
cost is 25400, 40000 and 65400 respectively (56% increase of
total cost from its offline version). Clearly, though the online
algorithm offers a feasible solution, it is worse than the offline
one. Such gap is analyzed below.
Theorem 1. No online solution for solving the PLP is O(1)-
competitive compared to the offline optimal solution.

Proof: Denote the i-th request comes with the coordinates
(2−i, 2−i), and the cost of opening a new parking at each
coordinate is f = 2. The walking distance for the i-th user
to the origin is

√
2−2i + 2−2i =

√
2 · 2−i < f . Therefore,

the optimal solution is to place the only parking at coordinate
(0, 0). By doing so, the total cost with n incoming requests is

no greater than 2+
√
2

n∑
i=1

( 12 )
i = 2+

√
2−
√
2 · ( 12 )

n. Assume

there is an online algorithm which is b-approximation to the
optimal offline solution, then the number of stations chosen by
it must be no greater than (2+

√
2)b (a finite number). Denote

the last parking chosen by the b-approximation is located at
(2−j , 2−j), then for all of the incoming requests after the j-th
request all have walking distance larger than

√
2 · 2−i−1. As

the number of requests approaches infinity, the sum of cost
is arbitrarily large. Apparently, the algorithm can not be b-
approximation, since its total cost should be bounded by (2 +



Algorithm 2: Parking Placement Algorithm with De-
viation Penalty (Online)

1 Input: Streaming trip requests U , parking computed by Algorithm 1
k = |P|, historical data H(x, y), cost coefficient β.

2 Output: Assigned parking in P , ∀u ∈ U .
3 w∗ ← minp,p′∈P ||p− p′||/2, a← 0.
4 fi ← fi · w∗/k, ∀i; g(·)← TypeIIPenaltyFunction.
5 for u(i, j) ∈ U do
6 P ← P

⋃
{i} with prob = min(g(i, j)cij/fi, 1); a← a+ 1

7 if a ≥ βk then
8 a← 0; fi ← 2 · fi, ∀i
9 Peacock’s KS-test⇒ D = supx,y |H(x, y)−G(x, y)|

10 D ⇒ g(i, j) ∈ {TypeI, II, IIIPenaltyFunctions}
11 p∗ ← argmin

∀p∈P
||u− p||, p∗ ← u ; G← G

⋃
{i}

√
2)b under the hypothesis, which results a contradiction. Thus

no online algorithm for solving PLP can be O(1)-competitive.

The above analysis suggests that, for PLP, it is not possible
for an online algorithm to produce results as good as its
offline counterpart, not even close with constant approximation
ratios. Yet, such gap is expected and not too pessimistic
for an online problem. To find specific problems using the
online algorithm, we test the method in [25] and find that: 1)
the algorithm may be biased to satisfy current demands and
blindly generate too many new parking locations; this directly
leads to inefficient use of public space and potentially higher
maintenance cost; 2) it may create parking at less desirable
locations since immediate decisions have to be made; e.g.,
when early requests are geographically scattered, new parking
is opened regardlessly, despite a better decision is to assign
them to the later ones that may be closer to all the users. These
findings suggest that making decisions purely online could be
far from optimal in some cases. So, both online or offline
methods have their pros and cons in practice. To combine their
best advantages, we propose a new algorithm next.

D. Our approach: Online algorithm with deviation penalty

The above analysis indicates that usage pattern should follow
a certain distribution in most of the time with possible spatial-
temporal shift. In [27] the offline and online placement of
charging stations serving electric vehicles are independent of
each other. We propose a new algorithm that can guide the
online allocation with the offline solutions (based on predic-
tions). Two metrics from the offline PLP are re-used: number
of parking k = |P| and their location set P . By referencing
to its number, we avoid creating too many parking; using their
locations as landmarks ensures established parking does not
deviate too much from the historical patterns, but still offers
the flexibility to react to the real-time dynamics.

First, the customer initiates a request with a destination.
When this request arrives at the server, the walking cost cij
between destination i and the closest parking j is measured
(user dissatisfaction). The cost of opening a new parking at
i is fi. Initially, the opening cost is small so the system

is encouraged to open new parking. The algorithm keeps
checking the number of parking that has been already opened.
If it exceeds βk, the opening cost fi is doubled. β ≥ 1 is a ratio
chosen as the input. The cost of opening a new parking grows
exponentially until it is prohibitive compared to assigning
users to existing parking locations2. The decision is made
stochastically. With probability prob = min(g(i, j)cij/fi, 1),
the destination request i is opened as a new parking or assigned
to an existing one j with probability 1−prob. fi is the opening
cost that increases over time. g(i, j) is a penalty function that
can take different forms,

Type I : g(i, j) =
1

cij/L+ 1
, cij ≥ 0 (6)

Type II: g(i, j) =

{
1− cij/L, 0 ≤ cij ≤ L
0, cij > L

(7)

Type III : g(i, j) = e−c
2
ij/L

2

, cij ≥ 0. (8)

L is the level of tolerance (measured in distance). It defines
how much the system allows the parking established by the
online algorithm to deviate from the prediction. Large L

permits higher level of tolerance to such deviations. Once the
data exhibits a significant divergence, the system could increase
L and fit such shift. L is scaled back when the distribution
returns to the previous one. To examine whether the new
trip requests come from the same distribution as the previous
one, we adopt the Peacock’s two-dimensional Kolmogorov-
Smirnov test (ks-test) [28], which is efficient and distribution-
free (independent of specific theoretical distributions)3.

2D KS-Test. The server maintains a stack of historical
data, from which the offline PLP has been computed. Denote
the cumulative distribution function of the historical data as
H(x, y) and the current data as G(x, y). x, y are the latitude
and longitude coordinates of the trip destinations. The test
computes the largest absolute difference between the two
cumulative probability distribution as a measure of misfit,

D = supx,y|H(x, y)−G(x, y)| (9)

where supx,y is the supremum of the set of distances (the least
upper bound). To find the largest difference for the cumulative
distributions in 2D, the Peacock’s ks-test enumerates through
all four combinations (x < X, y < Y ), (x < X, y > Y ), (x >

X, y < Y ), (x > X, y > Y ) and selects the largest among
the four differences as the final statistic. If D returns 0, the
two distributions are considered as similar; or dissimilar, if D
returns 1. For n locations, it generates O(n2) quadrants so
comparing all n requires O(n3) time.

Penalty Functions. The penalty functions allow various
degrees of location shift stochastically. If destination i falls into

2The algorithm also handles the cases when customers pick up all the E-
bikes from a station. In this case, the station is removed from P . The algorithm
can still establish a station at this location depending on the requests later.

3Although high-dimensional ks-test remains a challenge due to the curse of
dimensionality [29], the solution in low dimensions like the 2D geographical
space still has good usability.
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Fig. 5: Designs of different penalty functions (a) the probability
that a new parking is established (b) the first-order derivatives
(changing rate).

the grid of established parking j, c(i, j) = 0 and g(i, j) = 1 for
all three cases. In other words, no penalty is imposed because
the destination is very close to the offline solutions. If the
destination deviates further from the intended parking j (an
increase of c(i, j)), g(i, j) declines and it is less likely to open
a new parking at i (higher penalty). Fig. 5 illustrates these
functions with their first-order derivatives. Type II is designed
to plunge much faster than the others; beyond the tolerance
level of L, it eliminates the probability to 0 of opening a new
parking outside j. Type I applies modest decline and maintains
the probability over 0.2 even when the cost c(i, j) goes beyond
3L. Type III is between the other two. Both I and III maintain
some tail probabilities to make it possible to deploy some park-
ing that are far from j. When the temporal shift is significant
in terms of large requests, new parking locations would be
permitted outside the predicted region of majority. Different
penalty functions best adapt to different similarities (derived
via 2D ks-test) between the current and historical distributions
respectively, which is further discussed in Section V-B and
V-C. The online parking placement algorithm is summarized
in Algorithm 2, and its time complexity is O(n3).
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Fig. 6: Examples of solving PLP (a) proposed algorithm (23%
cost reduction from [25]) (b) handling new arrivals from
unknown distribution.

Example. Fig. 6 demonstrates an example of running the
proposed algorithm. In Fig. 6(a), 7 parking locations (including
2 established online) are opened and the cost of dissatisfaction,
space occupation, and their sum are 15542, 35000 and 50542

respectively, a reduction of 23% compared to Fig. 4(b) us-
ing [25]. When the new arrivals are drawn from an unknown
distribution, Fig. 6(b) shows that 3 more (online) stations are
introduced.

Algorithm 3: Incentive Mechanism
1 Input: Set of parking P = {p}, set of low-energy E-bikes L,

incoming requests U , charging threshold γ, and incent levels α.
2 Output: Relocation results for P .
3 for p ∈ P do
4 p.status = abundant.
5 if |Lp|/|p| < γ then
6 p.status = low

7 for p ∈ P do
8 if p.status = abundant then
9 S = {p′|p′.status = lack, ∀p′ ∈ P};

p∗ ← argmin
∀p′∈S

cpp′ .

10 for u(i, j, l) ∈ U do
11 if j = p & l.status = lack then
12 Incentivize α(q + td)/|Lp| for u to park at p∗.
13 if u accepts then
14 p∗ ← p∗

⋃
{l}, p← p \ {l}.

IV. TIER TWO: INCENTIVIZING USERS FOR CHARGING

OPTIMIZATION

The first tier of the framework optimizes the locations of
parking regarding user dissatisfaction. E-bike sharing relies on
a high utilization and turnover rate to be profitable, which ne-
cessitates timely energy replenishment and efficient operation.
This section studies the second tier to further optimize the
charging operations.

A. Charging Cost

Given the energy status, the operator sojourns at stations for
energy replenishment. For each stop, there are some associated
timing and monetary cost (e.g. parking tickets at crowded
POIs). Denote this by q as the service cost per parking. Serving
locations one after another leads to a delay for the later ones
in the sequence, denoted by d per parking. This delay can be
monetized by converting the demand that the system may have
missed because of low energy. Refilling/replacing a battery
takes charging cost b so li bikes take bli at location i. For each
parking, the charging cost is modeled as bli+q+ td if parking
i is served in the t-th position in the charging sequence. The
average charging cost for each E-bike is b+q/li+td/li, which
decreases when more E-bikes are serviced at each location. The
total cost C for n stations with l =

∑n
i=1 li bikes is,

C = nq +

n∑
i=1

lib+

n∑
t=1

td = nq + lb+
n2 − n

2
d. (10)

The operator’s responsibility is to replenish all the E-bikes with
low-energy. As seen from Fig. 2(d), the tails of low-energy
bikes scatter among different locations and make charging quite
inefficient. If the they are aggregated, the total charging cost
would be reduced (increase of denominator li per parking).

B. Estimate Cost Saving

To see how much cost saving aggregations can offer, denote
m as the number of maintenance locations (m < n). The



(a) (b)
Fig. 7: Cost saving ratios by applying incentives (a) Change
of saving ratio with m and n (b) Change of saving ratio with
q and d for different m.

optimized charging cost C∗ = mq + hb + (m2 − m)d/2.
Therefore, the ratio of cost saving is estimated as,

C − C∗

C
= 1− mq + (m2 −m)d/2

nq + (n2 − n)d/2
. (11)

To illustrate the relations between cost metrics and savings,
we depict numerical results in Fig. 7. Fig. 7(a) shows that for
fixed n, smaller m has quadratically higher cost saving, e.g.,
m/n = 0.65 brings about 50% cost saving. Fig. 7(b) shows the
relation between the cost saving and the service/delay cost. For
fixed m, once the delay cost increases from a small value, cost
saving climbs up sharply at the beginning, and slowly when
service cost increases. If the system can allocate a portion of
expenditures from the charging cost as incentives to motivate
the users for aggregation, is this strategy more cost-effective?

C. Online Incentive Mechanism

We develop an online incentive mechanism to reduce the
number of locations m that require charging. Providing incen-
tive is an appealing strategy since: 1) on the customer’s side,
they earn some rewards, which reduces their payment; 2) on the
service provider’s side, operators can charge E-bikes together
with a lower average cost. In particular, we study how much
incentive should be paid in order to have an overall cost saving.

Our objective is to incentivize the users to aggregate low-
energy bikes together at some locations k such that a majority
of them has energy below the threshold. The energy status of
the E-bikes are streamed back to the server [3]. We denote
these low-energy bikes by Li. When a user wants to pick up
an E-bike from i with a destination parking of j (computed by
Algorithm 2), the system encourages her to ride a low-energy
bike l ∈ Li to a neighboring location k by offering an incentive
v. The system should ensure the mileage between i and k

does not deplete the residual battery. The neighboring location
is chosen such that the milage between i to j and i to k is
identical. This prevents the users from not considering the offer
because of additional milage charge. v is upper-bounded by the
cost saved when Li are relocated to k so that only location k
need service. If the user declines the offer, the system continues
to query users arriving later until Li → ∅ ultimately. The cost
saving is upper bounded by,

∆i = (b|Li|+ q + td)− b|Li| = q + td. (12)

Thus, if v < (q + td)/|Li| and |Li| users accept the offer, the
operator no longer need to visit i, but k instead. The user’s
behavior of accepting or declining an offer is modeled as,

fu(i, j, k) =

{
1, if ckj∗ < cu and v∗u ≤ v;

0, otherwise.
(13)

For each user u, if the extra walking cost ckj∗ to the final
destination j∗, is less than the accepted maximum walking
distance cu and the incentive v is larger than the accepted
minimum reward v∗u, the offer is accepted; otherwise, it is
declined. In principle, to reach an equilibrium, the server
should negotiate with the user for several rounds. However,
bike-sharing system necessitates real-time decisions and users
are not patient to participate in any extended bidding process.
For better user experience and fairness, the system issues a
uniform offer to all the users v = α(q + td)/|Li|, 0 < α < 1.
α is a parameter that balances the level of cooperation with the
incentives paid by the system. It is set by the operator according
to the live demand and supply. E.g, during rush hours, users
may be reluctant to walk extra distance (small cu and high
v∗u). It is difficult to attract users with a small incentive so a
slightly larger α can be given. On weekends, users may be
more willing to cooperate and earn rewards, thereby a smaller
α can be set. The online incentive mechanism is summarized
in Algorithm 3.

Remarks: There could be some outliers during operation: 1)
no user takes the offer; 2) the new destination is packed with
low-energy bikes and undermines usability. For the first case,
the system can raise α to attract more users. However, this may
cause the payment to exceed the budget (cost saved) and some
E-bikes cannot be relocated under the budget. In this case, the
algorithm resumes at its best effort to reduce the remaining
low-energy E-bikes. Then the operator can skip those locations
with only a few ones left. Meanwhile, the algorithm can
gradually assign low-energy bikes to these locations, so they
have higher chance to be charged during the next service
period. For the second case, locations with aggregated low-
energy bikes should be scheduled in the upcoming charging
service so it would only have minimum and temporary impact
on usability.

V. EVALUATION

To evaluate the proposed algorithms in realistic settings,
the experiments are mainly based on the Mobike dataset [31]
which consists of data from the traditional “human-powered”
bikes. This dataset is applicable to E-bikes because: 1) there
lacks public dataset for E-bikes due to its nascency; 2) POIs
are the same so customers have similar destinations around
the POIs regardless of the bikes they ride; 3) traditional bikes
are allowed to park anywhere and these locations reflect the
actual destinations, which facilitate the calculation of user
dissatisfaction in E-sharing if stations were established around
the actual destinations.
Dataset. The Mobike dataset contains 3.2M bicycle trips from
May, 10th to May, 24th in 2017 in Beijing, China. Each trip



TABLE II: Comparison of RMSE of different prediction algo-
rithms (back - # backward time steps in hrs, wz - time window,
p - lag order, d - degree of differencing.)

LSTM back=24 back=12 back=6 back=3 back=1

1-layer 46.3 33.3 42.2 45.4 68.7
2-layer 35.1 29.1 37.8 43.1 68.6
3-layer 36.7 36.6 35.6 42.2 68.7

MA wz=1 wz=2 wz=3 wz=4 wz=5

47.9 60.5 66.9 70.7 72.8

ARIMA p=2 p=4 p=6 p=8 p=10

d=0 42.5 42.4 39.7 35.1 38.3
d=1 42.9 42.2 40.4 37.8 40.3
d=2 48.7 47.8 53.7 45.3 39.9

contains 〈order id, user id, bike id, bike type, starting time,
starting location, ending location〉. The locations are geo-
hashed. We re-interpret them into the corresponding latitudes
and longitudes, divide all the trips into non-overlapping bins
based on the ending locations, i.e., each bin contains trips
ended within a 100 × 100m2 grid. 23.9K bins are generated.
We establish an energy model based on the data crawled from
XQbike App (E-bike), which simulates the energy status of E-
bikes. By tracing each bike id with the energy status, locations,
the model can closely estimate the residual energy of E-bikes.
Experimental Parameters. We aggregate the geohashed grids
into a field of 3×3km2 and unify the unit of cost into meters.
The cost of space occupation is uniformly randomly distributed
with mean of 10 (km). The walking cost is measured by Eu-
clidean distance. The cost can be converted into the monetary
cost based on space rental and service charge/customer loss in
practice. The tolerance L of the penalty function is set to 200m.
The system also has unit delay cost of $5 and unit energy cost
of $2 when charging the E-bikes. The prediction engine is
developed with Tensorflow and tested on Nvidia Tesla P100
GPU and the backend algorithms are developed in Python and
MATLAB.

A. Prediction Engine

As an integral part of the system, we first implement and
evaluate the predictions. For each grid, given the current time
t, it forecasts the future k steps {t+ 1 : t+ k} given the data
of {1 : t}. The problem is a sequence learning problem and
we utilize a Long Short Term Memory (LSTM) network [30]
to forecast the future arrivals. LSTM is the state-of-the-art
recurrent neural network that surpasses traditional structures.
Each LSTM cell consists of a set of gates to remember
and forget relevant information towards minimizing the loss
objective. We stack 128 LSTM cells as the hidden layer and
extend the depth of the network by increasing the number of
layers. Since the data distribution of weekends is different from
the weekdays (validated by ks-test next), we process the two-
week data as the following. Weekdays are split as 7 days for
training and 3 days for testing; weekends are split as 3 days for

training and 1 day for testing. Fig. 8 shows the actual number
of requests vs. the predictions for a weekday and a weekend
among the test data. The Root Mean Square Error (RMSE) is
used as the performance measure,

RMSE(h∗) =
√
E
[
(h∗ − h)2

]
. (14)

h∗ is the predicted number of requests. h is the actual number
of requests, and E

[
(h∗−h)2

]
is the expectation of the square

error.
To evaluate the power of different prediction algorithms, we

compare LSTM with statistical time-series methods of Moving
Average (MA), and Auto-Regressive Integrated Moving Av-
erage (ARIMA) [32]. The prediction of trip requests in the
next 1 to 6 hours are shown in Table II. LSTM is evaluated
with different number of hidden layers and backward time
steps (back). MA is evaluated with different window sizes
(wz), and ARIMA is evaluated with different lag order (p)
and degree of differencing (d). 2-layer LSTM with backward
of 12 hours results the minimum RMSE of 29.1, while 1 layer
has insufficient representational power and 3 layers slightly
overfit. We can see that LSTM provides an average of 30%
improvement of RMSE compared to statistical methods, thus
used in the rest of the evaluations.

(a) (b)
Fig. 8: Actual requests vs. prediction (a) weekday (b) weekend.

B. Deviation Penalty

Next, we evaluate the design of penalty functions in Section
III-C. To understand how the penalty functions respond to the
more general cases, we conduct tests on synthetic data using
random distributions. Figs. 9(a-c) show three distributions:
uniform, poisson and normal, which correspond respectively
to an increasing similarity between the actual requests and the
predicted requests (the offline derived parking locating at the
origin). The results are averaged over 100 tests and summarized
in Table III with the bold indicating the minimum cost among
the penalty functions. Due to space limit, we visualize all the
cases together by dividing each figure into four sectors as no
penalty, Type I-Type III clockwise (origin at the center), and
all four sectors have the same distribution about 200 requests.
The results are analyzed below.

Uniform: Type I generates less parking compared with no
penalty. Type II tends to aggregate all the parking around the
origin. Type III generates more parking in further distances to
the origin compared with Type II. As verified in Table III, it
shows that Type II yields the minimum cost of public space
and Type I generates the minimum total cost. Since Type I
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Fig. 9: Parking generated under different random distributions for the penalty functions (a) uniform (b) poisson (c) normal.

function increases the penalty smoothly, its range of tolerance
is large enough to accept uniformly random arrivals that might
occur anywhere in the area, hence the minimum total cost.
Based on this observation, it is tempting to conclude that if
the distribution of requests fits into the tolerance range of the
function, it is prone to have lower cost. This is validated by
the following cases.

Poisson: Requests concentrate in the mid-range from the
origin which fall into the tolerance range of Type III and
Table III shows that it has the minimum total cost. Normal:
Requests aggregate around the origin, which fits into the
tolerance range of Type II. Likewise, Table III shows that Type
II generates minimum total cost as well. No penalty generates
the minimum walking cost as shown in the table, since it has
higher probabilities to establish new parking.

From the discussions above, we conclude that the tolerance
range should fit to the mean and expand to cover the standard
deviation of a random distribution in order to have optimized
cost at runtime. Here, we illustrate the designs of three func-
tions and their power to fit different kinds of distributions. It
is interesting that we can design the penalty function as high-
order polynomials to approximate an incoming distribution in
any reasonable shape. We intend to investigate this in future.

TABLE III: Cost of different penalty functions under uniform,
normal, and Poisson distributions (in km).

distr. & cost No Penalty Type I Type II Type III

un
if

or
m Walking 3.78 6.23 16.54 12.41

Public space 23.22 8.22 3.26 5.12
Total 27.0 14.45 19.80 17.53

Po
is

so
n Walking 3.63 4.35 5.01 6.02

Public space 23.54 14.31 14.58 5.35
Total 27.17 18.66 19.59 11.37

no
rm

al Walking 3.01 3.11 6.47 4.23
Public space 22.81 24.12 12.11 20.21
Total 25.82 27.23 18.58 24.44

C. KS-Test of Request Distributions

To evaluate the effectiveness of Peacock’s 2D ks-test, we
measure the similarity between the distributions of requests
in Table IV. The percentage of similarity is computed as
100(1 − D)%, where D is computed from (9), with closer

TABLE IV: Similarity (%) between distributions of requests.

Mon Tue Wed Thu Fri Sat Sun

Mon —— 94.1 94.4 94.7 97.2 57.8 69.4
Tue 94.1 —— 95.3 90.6 94.7 60.6 61.8
Wed 94.4 95.3 —— 92.4 92.2 65.6 70.6
Thu 94.7 90.6 92.4 —— 96.5 62.9 74.1
Fri 97.2 94.7 92.2 96.5 —— 69.4 79.4
Sat 57.8 60.6 65.6 62.9 69.4 —— 88.9
Sun 69.4 61.8 70.6 74.1 79.4 88.9 ——

to 100% representing perfectly similar. Comparison is made
between the same time (hour interval) through different days,
and the result is averaged over 24 hrs. We observe that the
weekdays and weekends have higher degrees of similarity
among themselves (darker background color). This matches
with our intuition since demand locations should be aggregated
around working places during weekdays, whereas different
locations such as recreation, restaurants, parks are more pop-
ular during weekends. Interestingly, Mon and Fri are more
similar than the rest, and the same for Tue-Thu. One possible
explanation is that being the first and last working days, people
are in a transition from relaxing to work or the opposite.

The above measurement suggests important thresholds and
how they can be co-designed with different penalty functions
in Eqs.(6)-(8). We categorize three cases: 1) above 95% (very
similar); 2) from 80% to 95% (similar); 3) below 80% (less
similar). The proposed online algorithm switches between
different types of penalty functions according to periodic
measurements. 1) very similar: type II is applied to make the
new parking close to those from the offline solutions (highest
penalty of deviations); 2) similar: type III is applied to allow
moderate deviations; 3) less similar: type I is applied because
it tolerates larger deviation with less penalty.

D. Parking Placement Problem

Next, we evaluate the proposed online algorithm (in E-
sharing) against the offline algorithm [23] as an upper bound
(assuming all the future requests are known in advance; ∗
denotes the solution is near-optimal). Then we compare with



TABLE V: Comparison of # parking and different cost (km).

# parking walking space total

Offline∗ 16.0∗ 242.5∗ 151.0∗ 393.5∗

Meyerson 32.9 297.4 311.9 609.3
Online k-means 45.2 1326.7 427.6 1754.3
E-sharing (actual) 25.3 220.8 239.2 460.0
E-sharing (predicted) 26.0 234.1 253.5 487.6

two other competitive algorithms: Meyerson [25] and online k-
means [26]. We demonstrate the relations between the number
of parking generated and the total cost in Fig. 10(a) by selecting
some random grid locations. Each point represents a selected
grid and a PLP is solved independently. It is observed that
the Meyerson’s algorithm [25] tends to establish more stations
than ours but some of them are redundant. The online k-means
algorithm establishes even more stations at a high cost of
public space. On the other hand, E-sharing is very close to
the near-optimal offline solution. This validates its power to
utilize predictions and flexibility to adapt to changes. Prediction
brings small errors to the actual values, and subsequently
impacts on the decision making. Fig. 10(b) shows such impact
(online k-means is not plotted due to its poor performance).
By comparing the actual and predicted values, we observe that
the errors only yield minor bias in decision making (discussed
next). Our algorithm surpasses the Meyerson’s algorithm and
is within 20% and 25% from the near-optimal offline solutions
with and without predictions, respectively.
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Fig. 10: Comparison of the total cost defined by Eq. (1) vs.
number of parking (a) actual requests (b) predicted requests.

Table V shows overall results and details the cost of walking
(user dissatisfaction) and public space occupation. Compared
to [25] and [26], it has 25% and 74% less total cost, and
23% and 44% less parking, thus much less impact on the
public space. It is worth mentioning that E-sharing achieves
even better walking cost than the near-optimal offline results
because it is more inclined to satisfy the real-time customer
demands. When there are some temporary shift of the demand
locations, our algorithm will selectively establish some stations
depending on the density of these shift. With LSTM, the
prediction error only yields 6% higher cost than the case with
perfect knowledge. This indicates that powerful models with
better representational capability should be used. Moreover, for
each user, we compute the average walking distance (about
180m of 2-min walk), which should be acceptable to most of

the users.

E. Incentivized Parking Relocation
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Fig. 11: Comparison of the distributions of low-energy E-bikes
(a) before incentivizing (b) after incentivizing .

We evaluate cost saving of the proposed incentivizing mech-
anism. Fig. 11 shows examples of energy status before and after
incentives are given. We model the energy distribution based
on the data captured from the app of [3]. The heatmap shows
where low-energy bikes are concentrated. Without incentives,
customers tend to use high-energy E-bikes, consume energy
and leave at any station. After incentives are given, some users
take the rewards to help the system aggregate low-energy bikes
towards designated parking. The operator traverses through
all the demand sites with the shortest route by solving the
Traveling Salesman Problem (TSP) [33] similar to the routing
of Mobile Chargers in the Wireless Rechargeable Sensor Net-
works (WRSN) [34]. A reduction of charging sites and length
of moving path is found in Fig. 11(b).
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Fig. 12: Total charging cost and percentage of E-bikes have
been charged with different incentives (a) Total cost (b) Per-
centage have been charged.

TABLE VI: Comparison of charging costs (in $) and charging
distance (in km) for different incentivizing levels α.

α = 0 α = 1 α = 0.7 α = 0.4

Service cost 1500 540 540 540
Delay cost 1500 180 180 180
Energy cost 571 548 522 461
Incentives 0 1244 1052 714
Total cost (sum above) 3571 2512 2294 1895
% have been charged 42.3 96.0 91.5 80.8
Moving distance (km) 17.1 14.1 14.1 14.1

Recall that the parameter α determines the amount of
incentives that the system is willing to give (α = 0 represents



no incentive). Fig. 12 shows the total charging cost and
the percentage of E-bikes that are charged vs. service cost.
The total cost is the sum of cost of service, delay, energy
and incentives and the results are summarized in Table VI.
Incentives certainly help reduce total cost, especially at places
where the service cost is high (e.g. populated downtown area).
A higher α motivates more users to cooperate at a cost of
higher system expenditures. We see from Fig. 12(a) that a
moderate selection of α = 0.4 achieves less cost compared
to the rest.

Meanwhile, system utility is impacted by the energy levels
of the E-bikes. We evaluate this metric by measuring the
percentage of E-bikes that have been scheduled under the
charging policy. That is, in a fixed amount of working hours,
the operator forms a TSP route through all the demand sites
and conduct charging in a paralleled manner at each location.
The percentage of charged E-bikes is plotted in Fig. 12(b). The
value (utility) is proportional to the incentives (improved over
75% with only a small level of incentives α = 0.4). Further,
the results also suggest a trade-off between potential customer
loss due to low battery and cost of charging. A solution is to
schedule the operators more frequently during rush hours to
the low-energy demand sites.

The average results and a breakdown of the total cost
are summarized in Table VI. Incentives can save about 64%
service cost, and 88% delay cost. α = 0.4 accomplishes the
minimum cost in our evaluation by saving 47% total cost. With
incentives, the operator also saves 17.5% in distance (potential
gas mileage and time waiting for traffic).

VI. CONCLUSION

In this paper, we optimize the dockless electric bike sharing
systems. Our goal is to address the emerging problems of the
high maintenance overhead and space occupation with a bal-
ance of the user experience. We propose E-sharing, a two-stage
optimization framework that can 1) form dynamic decisions of
parking locations based on both historical data distributions
and real-time demands, 2) incentivize customers to aggregate
low-energy bikes for charging optimization, 3) integrate with
predictions. The extensive experiments are conducted on large-
scale public dataset from Mobike. We implement an LSTM
network to predict short-term trip requests. Guided by the
predictions, we demonstrate that the proposed algorithm can
reduce the user dissatisfaction and space occupation by 25%.
By incentivzing the users, 47% of maintenance cost can be
saved. These findings are important and timely for optimizing
the bike rental businesses for smart and green transportation.
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