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Abstract—Energy remains a major hurdle in running
computation-intensive tasks on wireless sensors. Recent efforts
have been made to employ a Mobile Charger (MC) to deliver
wireless power to sensors, which provides a promising solution
to the energy problem. Most of previous works in this area aim
at maintaining perpetual network operation at the expense of
high operating cost of MC. In the meanwhile, it is observed that
due to low cost of wireless sensors, they are usually deployed at
high density so there is abundant redundancy in their coverage in
the network. For such networks, it is possible to take advantage
of the redundancy to reduce the energy cost. In this paper,
we relax the strictness of perpetual operation by allowing some
sensors to temporarily run out of energy while still maintaining
target k-coverage in the network at lower cost of MC. We
first establish a theoretical model to analyze the performance
improvements under this new strategy. Then we organize sensors
into load-balanced clusters for target monitoring by a distributed
algorithm. Next, we propose a charging algorithm named -
GTSP Charging Algorithm to determine the optimal number of
sensors to be charged in each cluster to maintain k-coverage
in the network and derive the route for MC to charge them.
We further generalize the algorithm to encompass mobile targets
as well. Our extensive simulation results demonstrate significant
improvements of network scalability and cost saving that MC
can extend charging capability over 2-3 times with a reduction of
40% of moving cost without sacrificing the network performance.

Index Terms—Wireless sensor networks, wireless charging,
target k-coverage, route planning.

I. INTRODUCTION AND RELATED WORK

Recent advances in technology are leading the trend to
launch intelligent applications on smart phones, wireless sen-
sors and wearable devices, and integrate them into the Internet-
of-Things. These applications usually rely on ubiquitous sen-
sors to capture and generate a huge amount of data from multi-
dimensions to detect, recognize and classify objects/targets
with high accuracy. However, energy consumption still remains
a major challenge for wireless sensors to conduct intensive data
processing, computation and communication. As an emerging
technology, wireless charging has provided a convenient way to
charge the battery of a sensor without wires or plugs. Sensors
can be charged in distance by either deploying static wireless
transmitters [1], [2] or Mobile Chargers (MCs) [4]-[7], [9],
[10], [13].

In [1], deployment problems of wireless transmitters are
studied to extend network lifetime. In [2], adjusting the power
level of wireless transmitters such that overall electromagnetic
radiations do not exceed a safety threshold is studied. In [3], a
new kind of mobile data gathering mechanism named SenCar
is proposed to achieve longer network lifetime compared with
static observer or other mobile observers. Inductive wireless
charging is studied in [4], [5], [8]-[10], [13]. Since this
technique is able to deliver hundreds watts of energy over
short distance, MC is usually employed to approach sensors in

close proximity for high charging efficiency. In [4], resonant
repeaters are utilized in a new scheme to more effectively
respond to dynamic energy demands and cover more nodes in
wireless rechargeable sensor networks. In [5], a hybrid network
consisting of solar harvesting sensors, wireless rechargeable
sensors and mobile chargers are proposed to reduce the
energy consumption of the network while maintaining the
performance. In [8], a greedy algorithm is designed to find
a charging sequence to maximize network lifetime. In [9], a
shortest Hamilton cycle is pre-planned through all the sensors
for wireless charging. In [10], MC receives real-time energy
status from sensors and makes charging decisions on-the-fly.
In [13], joint wireless charging and mobile data gathering is
considered. For high charging efficiency, in this paper, we will
focus on inductive wireless charging.

Most of previous works consider perpetual network op-
eration as an ultimate goal whereas such ambition usually
comes at high cost. To ensure no sensor ever depletes energy,
MC must respond to energy demands all over the network
at any time and anywhere. It not only complicates system
designs (algorithms), but also makes it difficult to implement
in large networks with hundreds of sensors. In addition, these
works have not jointly considered charging and balancing the
workload of sensors to make charging of MC more efficient.

It is observed that due to low cost of wireless sensors,
they are usually deployed at high density so there is abundant
redundancy in their coverage in the network. Taking advantage
of such redundancy, we can relax the strictness of perpetual
operation by allowing some nodes to temporarily stay in zero
energy status while still maintaining the network functionality.
To evaluate the sensing quality of such a strategy, we consider
a typical task, monitoring a set of rargets in a Wireless Sensor
Network (WSN). Rather than keeping full-coverage of targets
all the time which requires turning on all the sensors, we allow
k-coverage of targets [14], where k is a user-input based on
various task requirements. In fact, with advances in pattern
recognition and machine learning, k-coverage should be suf-
ficient for many applications, e.g., in a security monitoring
application, images from & camera sensors taken at different
angles can recognize objects with high accuracy.

Motivated by these observations, in this paper, we propose
a new framework, called k-coverage Wireless Rechargeable
Sensor Network (WRSN), where sensors are organized into
clusters around each target and it is required that at least k
sensors should be working in each cluster at any moment to
engage in sensing tasks to cover the target. In the meanwhile,
MC is adopted to meet energy demands from clusters. The
MC is usually more expensive compared with sensors, which
motivates us to improve its functionality. In deriving perfor-
mance improvements, we focus on charging capability of one



MC but the results can be easily scaled to adopt multiple
MCs. In particular, the new framework raises several new
challenges. First, to what extent does MC improve its charging
capability under the new framework? Second, how are sensors
organized around targets autonomously and how do clusters
balance workload to make wireless charging more efficient?
Third, how many sensors should MC charge in each cluster
while still satisfying target k-coverage and what is the optimal
route planning strategy for MC? Finally, what if targets can
move? Can we extend the algorithm to handle targets with
mobility?

To answer these questions, we first theoretically examine
the potential improvements in charging capability of MC in
terms of maximum distance it can cover in a one-dimensional
network and extend the result to a two-dimensional network as
well. Then we consider organizing sensors around each target
into a cluster and develop an iterative and distributed algorithm
to assign sensors in overlapped regions to different clusters
to achieve uniform cluster size. To find the optimal number
of sensors MC should charge in each cluster, we formulate
the problem into an Integer Programming (IP) problem and
propose a new charging algorithm called \-GTSP Charging
Algorithm. Finally, we establish a model to characterize mobile
targets as Brownian Motions [15] and expand the original
clusters to retain k-coverage of mobile targets. Realizing that
clusters cannot be expanded forever, we further derive a con-
dition which characterizes when the process should terminate
and a new round of clustering should start.

The contributions of this paper can be summarized as fol-
lows. First, we propose a new framework that relaxes the strin-
gent full-coverage requirement in a WRSN to k-coverage while
maintaining network functionality. We theoretically prove the
improvement in charging capability of MC under our new
framework. To the best of our knowledge, this is the first work
that attempts to optimize network cost from the perspectives
of target coverage/sensor load balancing. Second, we formulate
the charging problem into an optimization problem in which
MC is scheduled to only charge a portion of zero-energy
nodes in each cluster. The actual number could be dynamic
and different for different clusters as long as the network
manages to maintain target k-coverage. Third, in contrast to
most of previous works which only focus on static targets,
we extend our work to cover mobile targets as well. Finally,
we conduct extensive simulations to evaluate the performance
of the new framework and compare with previous works [8]-
[10] under all-charge and real-time charging strategies. Our
results indicate that the new framework can extend charging
capability of MC significantly (over 3 times of covering area)
and reduce about 40% of operating cost of MC. Meanwhile,
more than 80% target coverage rate is maintained for mobile
targets during operation.

The rest of the paper is organized as follows. Section II
introduces the network model, assumptions and motivations
of our work. Section III theoretically compares the charging
capability of MC based on different charging strategies. Sec-
tion IV studies how to balance the cluster size. Section V
derives the number of sensors to be charged in each cluster and

TABLE I
LIST OF IMPORTANT NOTATIONS

Notation Definition

k Required number of working sensors in each cluster
N Set of sensors

n Number of sensors

m Number of targets in the field

Ts Sensing range of a sensor node

n Charging threshold of a cluster

T;,C;, H; | Target, cluster and cluster head of cluster (z), respectively

n; Number of nodes in cluster %

l Estimated lifetime of a sensor with full battery

l; Estimated lifetime of cluster 4

L; Maximum lifetime of cluster ¢

v Moving speed of MC
At Time to charge a zero energy sensor to full capacity
Ai Number of sensors to be charged in cluster ¢
tre Time for re-clustering for mobile targets

plans the charging route for MC. Section VI further considers
mobile targets. Section VII evaluates the performance of the
new framework and Section VIII concludes the paper.

II. PRELIMINARIES

In this section, we describe the network model and assump-
tions of our work. Important notations used in this paper are
summarized in Table I.

We assume that a set of sensors, A/, are uniformly randomly
distributed in a sensing field, A, to monitor a set of identical
targets, 7. The number of sensors and targets in the field are
n and m respectively. In addition, there is a Mobile Charger
(MC) equipped with a high-capacity battery, moving around in
the field to charge sensors wirelessly. When a sensor depletes
its energy, MC can deliver power to the sensor in proximity.
When MC depletes its own energy, it returns to the base station
to replace its battery.

We first analyze the case when targets are static [19]-[21].
In practice, many applications require sensors to monitor static
targets such as security surveillance, traffic monitoring, etc.
After solving the static target case, we will also consider the
targets following a random mobility pattern.

Sensors have two operating modes, namely, working mode
and sleeping mode. In sleeping mode, sensors switch off
CPU/radio/sensing devices to save energy and we ignore en-
ergy consumption in sleeping mode. All the nodes have sensing
range r,. To aggregate data/samples of targets, sensors within
rs distance of targets are organized into clusters, C, where n;
sensors in the i-th cluster denoted as C;, monitor target T;.
In particular, if transmission range r > r,, data transmission
within a cluster can be done in 2-hop communication with
minimum overhead. In the case that a sensor can detect one
or more targets within r4 (i.e., can join multiple clusters), we
will give an algorithm in Section IV to resolve such contention
and ensure the size of neighboring clusters is balanced.

Since classification error and noise persist in the state-of-
the-art sensing devices, data fusion from multiple sensors can
improve the sensing quality and decision accuracy [22]. Thus,
we require k sensors to stay in working mode in each cluster
at any time to monitor the target. In this case, we say sensors
around a target provide k-coverage where k is a user-input
depending on application specifics. k can be as small as 1,
which reduces to a 1-coverage problem. On the other hand,



k can also be extended to n;, i.e., all the sensors in a cluster
are in working mode to provide full-coverage, which has been
the predominant method in previous works [1], [2], [9], [10].
Clearly, it incurs higher operating cost for MC to satisfy energy
demands of all the sensors in full-coverage.

We follow a k-coverage sensor scheduling approach. Ini-
tially, all the sensors have full battery capacity with average
lifetime . During operating, exact k£ sensors are in working
mode, while others remain in the sleeping mode. Before the
first batch of k sensors deplete their energy, they randomly
appoint the next batch of k sensors (with full energy) to
continue monitoring. If the cluster has less than 1 percentage
of alive nodes, the cluster head sends a charging request to
MC. We further define the maximum lifetime of cluster ¢ to
be L; = [7]l, where | 5] is the largest integer no greater
than %2, L; is the time duration until the cluster can no longer
provide k-coverage. When a sensor depletes its energy, it is
also turned into sleeping mode and waits for MC to charge.

The MC starts from the base station at a speed of v m/s
to fulfill energy requests received from sensors. The time to
charge the battery of a sensor from empty to full capacity
is At. For k-coverage, MC charges \; nodes in cluster Cj,
where the value of )\; is to be optimized in Section V-C. We
make additional assumptions as follows: 1) Sensors know their
positions by one-time configuration at the beginning; 2) The
base station calculates the charging route, and the route is sent
to MC through long range wireless communications.

Since we only charge a portion of sensors, \;, in each cluster
C; to keep k-coverage, a new route planning approach for
MC is needed. Most of the previous works directly adopt the
solution for Traveling Salesmen Problem (TSP) to establish a
Hamiltonian path through all the sensors. That is, the classic
TSP requires MC to visit all the nodes with energy charging re-
quests. In our k-coverage problem, we explore a generalization
of TSP called the Generalized Traveling Salesmen Problem
(GTSP) [17]. In GTSP, a salesman needs to find the shortest
path through some mutually exclusive sets of cities and the
path only includes one city from each set. In close analogy, our
objective is to find the shortest charging path through clusters
of sensors in which MC visits \; nodes in cluster C;. Hence,
we call our new problem A\-GTSP.

The question is whether \-GTSP can help us reduce the
moving cost of MC. The full-coverage in [9], [10] requires
MC to satisfy all energy charging requests. For a rectangular
sensing field of side length D; and D5, a deterministic upper
bound of the shortest path traversing n nodes with charging
requests is derived as 1/2(n — 2)D1 Dy +2(D; + D3) [18]. In
contrast, in k-coverage, we only charge \; nodes for cluster
C; so n is reduced to ), \;. Since \/2(n — 2) D1 D, is much
larger than 2(D; + D5), the ratio of tour length of MC derived
by A-GTSP to the length derived by TSP can be approximated

\/Q(ZZ Ai — 2)D1D2 =+ 2(D1 =+ Dg)

as
~ /2

V2(n —2)D1 D3 +2(Dy + D2) n
We can see that the cost saving to adopt k-coverage is
proportional to the square root of the ratio of numbers of nodes
charged. In practice, the actual number of nodes ) . A; is much
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Fig. 1.  An example of A\-GTSP charging framework providing target 2-
coverage for 3 targets.

smaller than n. Since k-coverage consumes much less energy
than all-coverage, our new approach should reduce moving
cost of MC significantly.

Fig. 1 shows an example of the A\-GTSP charging framework
with target 2-coverage for 3 targets. The left two clusters
have overlapped regions, in which sensors are assigned to two
clusters evenly for load balance. After clustering, sensors send
their energy status to the cluster heads through the red dashed
message routes (not drawn in the upper-right cluster for clarity)
and the cluster heads send charging requests to the base station
if the remaining energy in the cluster is below the threshold.
Then MC starts from the base station and charges zero energy
sensors following the green charging route. It responds to as
many requests as possible while assuring target 2-coverage.
Thus, it only charges a portion of sensors in the first cluster
so sensors from other clusters can be served on time.

III. CHARGING CAPABILITY OF MC IN A k-COVERAGE
NETWORK

Motivated by the potential cost saving of k-coverage net-
works, in this section, we theoretically derive the charging
capability of MC, which is represented by the scope or distance
of a field MC can cover. We compare it with the solutions
in previous works [9], [10], where all energy demands are
fulfilled in a single charging round. Since MC is usually much
more expensive compared to sensors, it is desirable to extend
its covering capability as much as possible. Therefore, for a
certain field, fewer MCs are needed in our framework. Our
analysis focuses on one MC but the results can be easily scaled
for multiple MCs. For analytical tractability, we first conduct
the theoretical analysis in a one-dimensional network and then
give the conditions on when the results for one-dimensional
networks can be applied to two-dimensional networks. We will
also examine the performance of two-dimensional networks by
simulations in Section VII.

A. Covering Capability of MC in a One-Dimensional Network

As mentioned in the previous section, MC starts from the
base station to fulfill charging requests from m clusters. The
sensors within 74 distance of each target are assigned to that
target to form a cluster. At any time, in each cluster, k& sensors
are in working mode while others are in sleeping mode. If the
cluster has less than 7 percentage of alive nodes, it sends out
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Fig. 2. Comparison of the scope covered by all-charge and partial-charge.

a charging request. The lifetime of a sensor is [, the charging
time from zero to full capacity is At, and the speed of MC is
v. In addition, for simplicity, we assume that the number of
sensors in each cluster is a constant ¢ and the distance between
two consecutive targets is a constant d as shown in Fig. 2.
The top two cases in Fig. 2 compare our approach with the
previous approach for k-coverage in a one-dimensional net-
work. Note that, for fairness, previous approach also only needs
to assure target k-coverage instead of target full-coverage.
The first approach (the previous approach) requires MC to
satisfy all energy demands whereas the second approach (our
approach) only requires to satisfy partial energy demands.
In particular, for the second approach, we assume that MC
charges an equal number of A nodes in each cluster. In fact, A
could be different for different clusters based on their energy
status and we will further optimize the value of A in Section
V. We compare the covering distance of the two approaches.
1) All-charge approach: It is not difficult to see that MC
needs to charge at least (1 — 7)c nodes in each cluster. Before
the arrival of MC, each cluster has residual lifetime I; ~ ncl/k,
where 7)c is the number of sensors that can work. Denote the
number of clusters MC can charge before the lifetime of any
cluster expires as a variable z. The following inequality holds

x[(lfn)cAtJr%} gmin{%d,(l%)d}, )

where (1 — n)cAt is the charging time needed in a cluster
and d/v is the traveling time of MC between two consecutive
clusters. The total time spent over «x clusters should be less than
the lifetime I; of each cluster. In addition, it should also be less
than the increment of lifetime (due to charging) of a cluster
denoted by (1—n)cl/k to guarantee perpetual operation. In this
way, at the end of a charging round, the ratio of the remaining
energy to the full energy in each cluster should be no less
than 1 so MC can cover such z clusters in a long run. Here
we stipulate that when (d/v)/((1 — n)cAt) <, i.e., the ratio
of traveling time to charging time is a very small value e, so the
traveling time can be ignored. Note that € is determined by the
accuracy requirement. Even for large networks, traveling time
between two targets hundreds of meters apart (1-5 minutes) is
still quite small compared to the charging time (60 minutes).
This condition for d can be written as

d < €(1 —n)cvAt. 3)
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When Eq. (3) is satisfied, we can ignore the term d/v and
further simplify z as

. n l
< L 1r—.
x_mm{l—n’l}kAt )
Then if n < 1/2, we have z < #)lkm.

2) Partial-charge approach: In this approach, MC only
needs to charge A sensors which are a portion of all sensors
in each cluster. We have 1 < A < (1 — n)c, since A cannot
exceed the number of nodes with zero energy. Similar to the
analysis above, we have

d . (mel Al
x(ml“r v) = m“;{ ko k }
. [me
mgmln{/\,l}kAt. 5)
If \/c <1, then we have z < ﬁ; otherwise, x < %.

When A/c < 7, the upper bound of z is %7, which is 1-n
times greater than = in Eq. (4). For example, if n = 20%,
MC can cover a distance 4 times longer in a one-dimensional
network using our approach. Therefore, we can utilize n <
1/2 and only charging a portion of zero energy sensors to
extend the charging capability of MC while still satisfying the
k-coverage requirement.

As an example, we compare the distance covered by MC
for the two approaches in Fig. 3. We observe that the covering
distance for charging A nodes scales much better than charging
all nodes. For fixed cluster size c, the two approaches converge
as A increases whereas more benefits are brought by charging
only a small A number of nodes, e.g., the improvements can
be as high as 4 times.

B. Covering Capability of MC in a Two-Dimensional Network

We now explore the condition under which the above result
can be applied to a two-dimensional network (shown as the
third case in Fig. 2).

For convenience, we plot clusters as circles with radius 7
in Fig. 2. Recall that in Section II, for ¢ sensors in a cluster of
radius 7, the upper bound of the shortest path is 27, (v/2c+2).
If it is less than d, then the traveling time within a cluster can
be ignored. The result for a one-dimensional network can be
used in a two-dimensional network when 27“8(\/% +2) <d,
which is d

s < ————. 6
" ~ 2(v2c+2) ©



By applying Eq. (3) and Eq. (6), we obtain the maximum area
a cluster can occupy, 2r,-d < [e(1—n)cvAt]?/(v/2¢+2). Since
clusters and targets have a one-to-one mapping, its reciprocal
yields a lower bound of target density p,,,

V2c+2
pm = [e(1 —n)cvAt]?”

If target density satisfies Eq. (7), in a two-dimensional network,
the charging capability of MC in terms of maximum number of
clusters it can handle can be calculated by applying the result
in Section III-A.

@)

IV. FORMING CLUSTERS FOR TARGETS

In this section, we consider how to form clusters to monitor
the targets and also reduce the moving cost of MC. In general,
in a k-coverage network, sensors in a larger cluster can share
their workloads better and work less, whereas sensors in a
smaller cluster work more and consume energy faster thereby
requesting for charging more frequently. Our objective is to
balance the number of sensors among neighboring clusters
so that sensors would have similar loads and energy con-
sumptions. In this way, a single charging round can cover
more energy charging requests and reduce the moving cost
of MC. We briefly describe how to form original clusters and
select cluster heads. Then we investigate how sensors that can
monitor multiple targets are assigned into clusters to balance
cluster sizes.

A sensor can detect any target that is within its sensing
range rs. For those sensors that can only detect one target,
we assign them to form the original clusters {C;}. C; consists
of the sensors that can only detect target 7;. In case that all
the nodes around a target can also detect other targets, we
initialize the cluster with a randomly picked node. A cluster
head is selected for each cluster.

A number of algorithms have been proposed for cluster head
selection in WSNGs. In [11], a centralized algorithm is proposed
to realize real-time head selection based on node concentration,
energy level and centrality. In [12], a distributed algorithm is
proposed to elect cluster head based on residual energy of
nodes and the average energy of the network. We adopt the
algorithm in [12] for cluster head election in our network.
However, the randomness of target locations may result in
overlapped clusters when targets are close. That is, a sensor
can detect multiple targets and henceforth, may be assigned
to multiple clusters. Next, we discuss how to resolve such
contention and ensure that any node in the overlapped regions
joins only one cluster and the variance of cluster size is reduced
as much as possible.

The set of cluster heads is denoted as H. Each head H; € H
manages cluster C; which monitors target 7;. For brevity, we
use the same subscript notation of clusters and their associated
targets here interchangeably because they refer to the same
cluster at the high-level. As an example, an (unclustered)
sensor detecting multiple targets such as 7, in C, and target
Ty in Cy (a,b € T,C) is denoted by a tuple [T, Tp]. Tuples are
distinguished according to their elements, we denote the [-th
type tuple as wj. |w;| is the tuple size equal to the number of
targets contained in w;. The set {w;} is sorted in an ascending

TABLE II
CLUSTER SIZE BALANCING ALGORITHM

Input: Set of different types of tuples {w;};
sets of nodes having the same tuple w; denoted as {U;};
original clusters {C;} consisting of sensors only detecting 77;
number of sensors in original cluster C; denoted as n;.
Output: Set of size-balanced clusters {C;}.
for [ =1,2,...,{¥}

while U; # ¢

Node u € ¥y;

k < argmin{n;};

1€Ew)

Ci +— Cy, U{u}; ne < ne + 1;

U, =0\ {u}.

end while
end for

order regarding |wy|, i.e., |wi| < |wit1], V. To find nodes that
can monitor the same targets, we group nodes having the same
tuple w; into a set ¥;. All these different ¥; form a bigger set
{W,}. Next, we first give an example for handling tuples with
|UJ1| = 2.

At the beginning, a head H; initializes a node count n; as the
number of sensors in the original cluster C;. Then it progresses
to examine tuples with |w;| = 2. For head H;, it needs to
balance its cluster size by negotiating with the neighboring
cluster head H;. Both H;, H; € H and the two clusters Cj, C;
share n;; sensors. In other words, all these n;; nodes can detect
and only detect targets ¢ and j. Assume that the current node
count in cluster C; is n;. Without loss of generality, assume
n; < ny, the case for n; > n; can be similarly handled. If
n; + n;; < nj, then assign all shared n;; nodes to Cj; if
n; + ni; > nj, then assign | (n; + n; + n,;/2)] — n; sensors
to Cj, and the rest of shared sensors to C}.

For tuples with |w;| = 2, the algorithm proceeds to examine
all pairs of neighboring cluster heads H;, H; € H. Next, a new
round for tuples with |w;| = 3 is initiated and the iteration
goes on until all the nodes in the overlapped regions have
been assigned to appropriate clusters. The algorithm keeps the
sensors with larger tuple size for later assignments since they
have more flexibility to join clusters compared with the sensors
that only detect fewer targets.

In general, the cluster size balancing algorithm is described
as follows. We go through the set {¥;} from ¥;. Among the
targets in tuple w;, we find target 7} corresponding to the
cluster C) with minimum nj. A node w is randomly picked
from Wy, and assigned to cluster C. Thus, ny is increased
by 1. Then we remove node v from ¥;. For the remaining
nodes in ¥y, we repeat the above process until ¥y is empty.
The iteration continues for Wy, W3, ..., until the set {T;} is
exhausted. This algorithm is summarized in Table II.

Fig. 4 illustrates the cluster size balancing algorithm by an
analogy of placing balls (sensors) into bins (clusters). Here, we
have 3 clusters, Cy, Cs, C3 with 4 overlapped regions. Nodes
in the overlapped regions are colored in different colors. The
algorithm starts from the overlap between C; and Ca, which
shares 3 red balls. Note that red balls are only shared by C}
and C5, thus they cannot be assigned to Cs. After balancing,
C7 and C5 are assigned 2 and 1 red balls respectively, so the
updated numbers of balls (sensors) in C; and C5 become 5 and
6. Similarly, the next steps distribute green balls and yellow
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Fig. 4. An example of balancing nodes in neighboring clusters.

balls shared by C7, C5 and C5, Cj, respectively. Finally, the
purple ball shared by all three bins together is assigned to C
since C7 has the least number of balls. We can see that after
the balancing, the numbers of nodes in C7, Cs, C5 become 8,
7, and 8, respectively, which are close to each other.

We now analyze the message overhead of the above al-
gorithm. Note that for m clusters, although there may be
() +(F)+---+ () = 2™ —m enumerations of overlapped
regions, the actual number of iterations is bounded by the
number of nodes n in the overlapped region. In each iteration,
only a constant number of messages are exchanged, and
number of iterations is at most n, so the overall message
overhead is O(n).

V. CHARGING SCHEDULING OF MOBILE CHARGER

In this section, we study the charging scheduling of MC
in a target k-coverage network. First, we propose a new
distance metric by jointly considering traveling distance and
cluster lifetime. Second, we find the shortest Hamilton path
through clusters by transforming GTSP to TSP. Based on the
charging sequence, we formulate the problem into an Integer
Programming problem to maximize the number of charged
nodes (A\;,¢ € C) in each cluster per unit lifetime. Finally,
we derive the so called \-GTSP charging route, and give an
example to demonstrate the complete process in this section.
The above steps are altogether summarized as the A-GTSP
Charging Algorithm.

A. New Distance Metric

Calculating the charging sequence without taking node life-
time into consideration may easily lead to infeasible solutions.
Intuitively, to maximize performance, MC needs to charge as
many nodes as possible. However, charging more sensors at the
beginning of the sequence would inevitably elongate the entire
charging process and postpone charging for subsequent nodes.
These nodes may deplete energy before MC arrives, which
violates the target k-coverage requirement. On the other hand,
to meet battery deadlines from all clusters, MC may visit only
one node from each cluster (\; = 1,Vi € C). Nevertheless,
this scheme is inefficient due to high moving cost, since MC
has to come back again for other charging requests eventually.
Therefore, our goal is to find a balance in between.

Consider a set of clusters C1,Co,...,Cy sending charging
requests. A cluster with limited lifetime later in this sequence
is a bottleneck since all the clusters ahead need to reduce their
charged nodes number \; until the charging time spent on them
no longer violates the charging schedule for the bottleneck

cluster. A natural solution is to push the bottleneck forward in
the charging sequence so its impact on the remaining clusters
is minimum. Hence, we introduce a new distance metric d.,,,
lilj _ lzlj
Ly YRR
where d,,, is the Euclidean distance between nodes v and v,
which belong to clusters C; and C; separately. [;/L; and [;/L;
are the normalized lifetime for clusters C;, C;, where [; is the
remaining lifetime and L; is the maximum lifetime of cluster
C;. For example, if I; = L;, l; = L;, the new distance d,,,, =
dyw, whereas if I; = L;/2,1; = LJ/2 d,, = duy/4. If two
nodes in the field have shorter lifetime, their “distance” is also
much smaller. Thus, during tour planning, the edges between
nodes with less d!,, would be considered with higher priority,
and clusters of shorter lifetime can be visited earlier by MC.
Next, we develop such a tour planning algorithm based on this
new distance metric.

B. Transforming GTSP to TSP

Recall the definition in Section II, solving Generalized
Traveling Salesmen Problem (GTSP) for the target k-coverage
network gives the shortest route which visits exactly one node
in each cluster. In the following two Sections V-C, V-D,
charging route of MC is derived based on the GTSP route
calculated in this section.

To find the shortest route through clusters, we transform
GTSP into a TSP so that we can apply classic TSP algorithms
(e.g., nearest neighbor) for the problem. The transformation
process is based on the algorithm in [17]. Fig. 5 demonstrates
an example of the algorithm. First, a set of arbitrary Hamilto-
nian cycles are formed in each cluster. The Hamiltonian cycle
starts from any selected sensor, “visits” all the nodes with zero
energy exactly once and returns to the starting sensor. The
direction is picked arbitrarily (clockwise or counter-clockwise),
and henceforth, each node has its direct parent node. Second,
the distances along the Hamiltonian cycle is set to zero. As
shown in Fig. 5, d;u = 0 since p, u are adjacent in the same
Hamiltonian cycle. For nodes u and v in different clusters, we
set the distance from u’s direct parent node p to v, d;,, = d,,,,
After the above steps, solving GTSP has been transformed into
solving TSP. Finally, based on these distances, we run a TSP
algorithm on all clusters to form the shortest path that traverses
all zero-energy nodes in each cluster, as denoted as the yellow
dashed lines in the figure. The route has one entering node
u and one exiting node p in each cluster. The exiting node
p is the parent node of the entering node u. Since we have
set d;,, = dy,,, u is selected as the only charging node in its

uv?

cluster, which solves the GTSP problem.

dyy = d ®)

C. Optimizing \;

We further find the optimal number of nodes to be charged
in each cluster C;. By solving GTSP, we obtain a charging se-
quence of clusters {C1,Cs, ..., C,}. For convenience, denote
the traveling distance between two consecutive clusters C;_1,
C; as d;. The lifetime [; of cluster C; can be found based on
k and residual energy of sensors,

L= VF” 1y 2w
¢ k kcs

; ©)
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where F; is the set of sensors in sleeping mode with full
energy, W, is the set of sensors in working mode, c, is average
energy consumption rate of a working sensor, E; is residual
energy of node j. We formulate the optimization problem into
an Integer Programming with the objective of maximizing the
total number of nodes charged per unit lifetime over all clusters

q
P1: maxz% (10)
i=1

Subject to

j—1 J
STXNAt+Y difv<1;,Vji=2,3,...,q, (11)
=1 =1

1< N <NOVi=1,2,....q, (12)

where N? is the number of nodes that have depleted energy
in cluster C;. \; in Eq. (10) can be considered as the benefits
brought by charging, which is further scaled by the reciprocal
lifetime of a cluster 1/l;. In this way, if the lifetime of a
cluster is low, charging more sensors in it would bring more
benefits and charging clusters with long lifetime would bring
less benefits. We design the objective function in this way
so that limited resources from MC can be distributed better
among different clusters. In addition, Eq. (11) states that all
prior charging time plus traveling time to a cluster should be
less than its lifetime so it can guarantee k-coverage. Eq. (12)
stipulates that MC charges at least one and a maximum of N
nodes.

Since Integer Programming is NP-complete [23], a simple
way is to adopt Linear Programming relaxation and round the
results to a smaller integer (take the floor operation at the end).
In our case, the efficient Integer Programming solver CPLEX
is used for deriving \; [24].

D. Calculating \-GTSP

After \; has been calculated for each cluster, MC selects
which \; nodes should be added into the charging routes such

TABLE III
A-GTSP CHARGING ALGORITHM

Input: A number of ¢ simultaneous energy requests;

distance dy,,, between nodes u,v; set of all the clusters {C;};
lifetime of cluster C; denoted as [;.

Output: \-GTSP charging route for MC.

Step 1: Construct (directed) Hamiltonian cycle in each cluster;

for adjacent nodes p, u in the same Hamiltonian cycle, d;,,, < 0;
for nodes p, v from different clusters, p is parent of u , dy,, < dyy.
Step 2: Based on new d.,,,, solve TSP, obtain

GTSP route < | J{entering point of TSP route in C;};

K3

charging sequence « {C1,C,...,Cq}.
Step 3: Solve Integer Program P1: Eqgs. (10), (11), (12), obtain A;.
Step 4: Width of sweeping sector h; = 0; § = width increment;
for all the clusters, do

hi < h; + §, construct sweeping sector of width h;;

Z; < set of zero-energy sensors in sweeping sector;
until |Z~L| = )\1‘7 Vi = 1, 27 ey q.
Obtain A-GTSP route by solving TSP over | J{Z;}.

that the additive moving distance to the original GTSP route
is minimal. To prevent MC from deviating the GTSP route, a
sweeping sector is created by two lines that are parallel to the
moving trajectory of MC (as shown in Fig. 6). The sweeping
sector is gradually expanded to add more nodes with zero
energy until the sector contains A; nodes and TSP is solved
in each cluster to connect \; picked nodes by a shortest path.
Finally, a A\-GTSP charging route is generated which traverses
through \; nodes in each cluster calculated by the IP in Eq.
(10).

An example of the A\-GTSP charging algorithm is shown
in Fig. 6. A segment of the GTSP charging route is depicted
by the black arrows from cluster C; to C;;;. We focus on
the red nodes that have depleted energy. Assume that solving
the Integer Program P1: Egs. (10), (11), (12) gives a solution
A; = b and \;;; = 4. The sweeping sectors are contained
within the dashed lines (h; and h;11 distances away from the
GTSP trajectory). Note that h; and h;41 could be different
since the processes are performed independently in different
clusters. We denote the set of zero-energy sensors within the
sweeping sector for C; as Z;. h; increases from 0 by ¢ each
time until \; is reached (|Z;| =5 and |Z;11| = 4 for \; =5,
Ai+1 = 4). The shortest Hamiltonian path through all these
A; nodes in C; is the A-GTSP route represented by the green
arrows in Fig. 6.

The above calculations can be done at the base station and
disseminated to MC through long range wireless communi-
cations such as LTE. We summarize all the above process
discussed in section V as A-GTSP Charging Algorithm in Table
1.

E. An Example of \-GTSP Network

We demonstrate the process of \-GTSP algorithm in Fig. 7
by taking a snapshot during the operation. We set the number
of targets to 7 in a square field comprised of 60 sensors. The
sensors within sensing range r, of targets are organized into
clusters by the distributed cluster size balancing algorithm in
Section I'V. Upon receiving charging requests from the clusters,
base station derives the GTSP route denoted as the blue lines in
Fig. 7(a) based on the new distance metric. Finally, the A-GTSP
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Fig. 7. A running example of A-GTSP network. (a) GTSP route for mobile
charger. (b) A-GTSP route for mobile charger.
algorithm calculates number of charged nodes A; for each
cluster and iteratively finds those sensors along the original
GTSP trajectory and the corresponding A-GTSP route in Fig.
7(b).

VI. EXTENSION TO MOBILE TARGETS

In this section, we extend our algorithms to handle mobile
targets and demonstrate that it only requires minimum changes.
On the other hand, since the mobility pattern of targets is
dynamic, for effectiveness, we allow the network to re-cluster
at certain points. Thus, we give the condition on when such
re-clustering is needed.

A. Cluster Expansion

In practice, there are a growing number of applications
that require sensors to not only monitor stationary targets
but also mobile targets. For example, imaging sensors can
utilize machine learning algorithms to detect pedestrian, and
environmental sensors deployed in the habitat can monitor
migration patterns of animals. Since the mobility patterns are
specific in different applications, we present a general study
when targets have random mobility and model their movements
by 2-dimensional Brownian motion. After the first discovery
of random motion of particles in fluid, Brownian motion
finds many applications in the field of physics, finance and
engineering [15]. In [16], the moving trajectories of targets in a
WSN are characterized by Brownian motion. In such a model,
a target has equal chances to move towards any direction. The
model is memoryless such that the preceding step of a target
is independent of its succeeding step.

Since sensors are stationary, we need to know the deviation
of target positions regarding their initial positions over time.
It is represented by the mean square displacement,

< 22 >=2-dim- Dt, (13)

where dim is the dimensions of the space (2 for the 2-
dimensional sensing field), and D (m? /s) represents the diffu-
sion coefficient of target, and ¢ is a time span. The diffusion
coefficient D is proportional to the moving speed of a target
so a higher D corresponds to faster speed. In this paper,
we have assumed the targets are identical so they have the
same diffusion coefficient D. The square root of mean square
displacement represents the expected displacement of target
over time. For a 2-dimensional field, v/< 22 > = 2v/Dt.
Based on the expected displacement of targets, clusters
should expand their boundaries accordingly to cover targets
with high probability. For static targets, the boundary of a

cluster is fixed (at a maximum of 7). For mobile targets, after
observing a target for ¢ time, the expected displacement is
2v/Dt so this value should be added to r, as the new radius
of cluster. It can be done by the cluster head to propagate a
message at time ¢ to the nodes that are h = [(r, + 2v/Dt)/r]
hops away, where r it the transmission range of sensor.
That is, a node outside the original cluster falls into h-hop
communication range after some time ¢ and this node has not
joined any cluster yet. It will join at time ¢ to monitor the
target if the expanded boundary reaches the node.

B. Re-clustering Condition

As we have seen, to maintain k-coverage of a mobile target,
the cluster should expand to add more sensors for monitoring.
Such expansion cannot continue forever due to following
reasons. First, the cluster boundary at time ¢ only represents
the expected target displacement, it is possible that the target
has already moved out of the cluster. Second, the number of
sensors that participate in monitoring the moving target also
increases to assure target k-coverage. For the original cluster
of area 772, the number of working sensors per unit area
is k/(mr?). For uniform sensor distributions, this number is
increased to (r, 4+ 2v/Dt)?k/r? at t to maintain the density
of working sensors in expanded cluster. The expansion should
stop before MC can no longer cover all charging requests in
the sensing field. Re-clustering should be initiated when either
one of the two conditions is met. Next, we derive the condition
for re-clustering.

As discussed in Section III, if the target density p,, in an
area satisfies Eq. (7), then the maximum number of targets that
one MC can cover is [/(kAt). For the expanded cluster here,
k should be replaced by (r +2v/Dt)?k/r2. Thus, the quantity
of targets that one MC can handle should be greater than or
equal to the total number of targets in the field .A.

2
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Solving the equation, we derive the upper bound of ¢ for re-
clustering. Combining with the first case, the re-clustering time
is denoted as

(14)

2 l 2
t :min{Ti( 7—1)}
"4D \V kmAt ’
where 7 is the time when the target moves out of cluster;
otherwise, 7 = oo.

5)

VII. PERFORMANCE EVALUATIONS

We evaluate the performance of the proposed target k-
coverage WRSN framework by a discrete-event simulator and
compare it with previous works that require “all-charge” [9],
[10], in which all the zero energy sensors in a cluster are
charged by the MC.

In our simulation, N = 500 sensors are uniformly randomly
distributed in a square sensing field of side length L = 160
m and m = 10 targets are randomly scattered. Node and
target densities are 1.9 nodes/100m?, 4 targets/10*m?, respec-
tively. Time is equally slotted (1 min) and the average energy
consumption rate of working sensor is 12 J/min. A typical



sensing range 7, is set to 15 m. Sensors have chargeable Li-
Ion battery of 1200 mAh capacity and 3.7 V working voltage
with At = 30 mins charging time from empty to full. The MC
moves at a constant speed of 10 m/min and consumes e; = 5
J/m. When the percentage of sensors that can work in a cluster
is lower than a threshold 1 = 20%, the cluster head sends out
an energy request. The total simulation time is typically set to
60 days.

A. Charging Capability

First, we evaluate charging capability of MC in the new
framework compared with previous works of all-charge [9],
[10]. The charging capability is measured by the area that one
MC can cover without violating target k-coverage at any time
during the operation. In Fig. 8, our algorithm is called A-charge
since only \; sensors are charged in each cluster. For a given
field length L, we test the two schemes 100 times with a new
random distribution of sensors and targets each time. If any
iteration fails to satisfy k-coverage, we state that MC can no
longer cover the field of length L.

Fig. 8(a) compares covering area of MC between charging
A; and all the nodes in a cluster, where k is varied from
1 — 3 for both cases. For fairness in comparison, “all-charge”
algorithm also just needs to maintain target k-coverage instead
of target all-coverage during simulation. First, we observe that
regardless of which framework is considered, the covering area
decreases with the increment of k. This is because that when
k increases, more sensors are turned into working mode thus
higher energy consumptions and energy demands are observed.
Clusters would have energy requests more frequently, which
confines the charging scope of MC. Second, for specific k-
coverage requirement, our framework surpasses the previous
framework on covering area of MC. For example, when
k = 1 and low node density (less than 2.7 nodes/100m?),
our algorithm grows the covering area by an average of 3
times and 2.4,1.5 times for k = 2, 3, respectively. Although
a higher node density slightly diminishes the benefits of k-
coverage framework (due to higher energy consumptions), our
framework still achieves about 50% increase of covering area
of MC for k = 1,2 even if node density is doubled.

Next, to examine the performance of our framework further,
we allow the simulation to run longer until k-coverage no
longer holds. The exact time of such failure is plotted versus
the increase of sensing field in Fig. 8(b). The failure time is
averaged over 100 simulation runs. We set the upper limit
to be 120 days just in case the MC successfully maintains
k-coverage over the entire time period. Note that when we
increase the field length, node and target densities are retained
(1.9 nodes/100m2, 4 targets/10*m?). We first observe that
failure occurs much faster with a larger sensing field. This is
intuitive since larger field with more targets incurs much higher
energy cost and MC can barely satisfy all the energy demands.
Second, for the same field size, our framework can support the
network much longer than the all-charge framework.

It is worth mentioning that when k£ = 1, our framework
with only one MC successfully accomplishes k-coverage at
any time during the 120 days whereas the curve of all-charge
framework drops sharply which can only sustain 15 days. For
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Fig. 8. Covering area and covering failure time. (a) Covering area of one
MC vs. sensor density. (b) Target k-covering failure time vs. field area.

the failure time, the results demonstrate our framework can
support the network much longer. For example, when k = 2,
our framework lasts for 9.6 days and the all-charge framework
only runs for 6.8 days with the field size of 1.0 x 10° m?2.
When k = 2, the network runs for 20 days with the field size
of 5 x 10* m? while the same 20-day operation requires the
all-charge framework with less than 2.5 x 10* m? field size (a
complete half of the area size). When k = 3 with a field size
less than 2.6 x 10* m2, our framework can still last for more
than 120 days while the all-charge network only runs for 13
days. In sum, the results show that our new framework can
extend network lifetime by a large extent.

B. Moving Cost of MC

Second, we compare the moving cost in our framework
(which applies A-GTSP) to the real-time charging algorithm
proposed in [10]. For fairness, the algorithm in [10] also
charges the same number of \; sensors in each cluster whereas
the locations of these sensors are picked randomly and the
choices of which clusters need charging are planned at real-
time.

Fig. 9(a) shows the ratio of moving cost of MC using our
A-GTSP algorithm to the cost of real-time algorithm. We can
see that our algorithm saves 40% — 50% energy due to -
GTSP charging algorithm and careful selection of \; sensors
in each cluster. We examine the evolution of this ratio with
respect to the number of simultaneous charging requests. It is
interesting to see that receiving more simultaneous charging
requests actually helps us reduce more operating cost on the
MC compared to the scheme in [10] that only charges the
next nearest cluster. This is because the MC always enjoys the
benefits brought by A\-GTSP once a charging route is planned
appropriately.

Fig. 9(b) shows the relation between the total moving cost
of MC and number of targets. The cost increases linearly as
the number of targets grows. This is because that MC has
to meet rising energy demands from sensors (monitor more
targets). For different k-coverage requirements, A\-GTSP can
always provide a cost saving of more than 50% as the number
of targets increases. We also notice that k = 2 is larger than
k = 1. It verifies that a higher £ would incur higher operating
cost on MC.

C. Coverage Percentage and Re-clustering Time for Mobile
Targets

Finally, we evaluate the performance of our framework for
mobile targets. Fig. 10(a) compares the average percentage of
targets being k-covered by our dynamic clustering algorithm
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with the static clustering algorithm summarized in Table II. In
the simulation, 15 targets are randomly distributed in a square
field of side length 160 m. 2000 sensors are distributed in a
larger square field of side length 320 m which contains the
smaller field. The diffusion coefficient of target D is set to
3.6 m?/day. The target coverage rate is the ratio of the number
of targets being k-covered to the total number of targets,
which is sampled every 1 min. The average target coverage
percentage shown in the figure is the average target coverage
rate over every 5 days. The coverage percentages are derived
from 100 simulation runs.

For the same k value, the dynamic clustering scheme
can maintain much higher average target coverage percent-
age compared to static clustering. The coverage percentages
decrease with time, since the variance of target locations is
getting larger. Meanwhile, a smaller £ corresponds to higher
coverage percentage, since it is easier to satisfy the coverage
requirement. For k£ = 1, 2, 3, our dynamic clustering scheme
can maintain at least 80% coverage rate within 30 days.

Fig. 10(b) demonstrates the change of average re-clustering
time for different target mobility. According to our approach,
if any target moves out of the cluster or the MC can no longer
fulfill the charging requests of all clusters, re-clustering is
needed. The re-clustering time is averaged during 120 days
simulation time and over 100 simulation runs. As shown in the
figure, the average re-clustering time decreases as the diffusion
coefficient of target increases and smaller k& corresponds to
longer re-clustering time.

VIII. CONCLUSIONS

In this paper, we have considered target k-coverage in
WRSNs. First, we conduct theoretical analysis on the im-
provement of charging capability of MC by only charging a
portion of sensors. Second, we study a distributed algorithm
that can assign sensors into balanced clusters around targets.

Third, we optimize the number of sensors being charged in
each cluster while guaranteeing target k-coverage. A \-GTSP
charging algorithm is proposed. Next, we further consider
mobile targets such that original clusters are expanded until
a re-clustering condition is met. Finally, we demonstrate that
the new framework can greatly improve the charging capability
of MC and reduce the operating cost.
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